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Abstract

First/second-order reliability method (FORM/SORM) is considered to be one of the most reliable
computational methods for structural reliability. Its accuracy is generally dependent on three parameters,
i.e. the curvature radius at the design point, the number of random variables and the ®rst-order reliability
index. In the present paper, the ranges of the three parameters for which FORM/SORM is accurate
enough are investigated. The results can help us to judge when FORM is accurate enough, when SORM is
required and when an accurate method such as the inverse fast Fourier transformation (IFFT) method is
required. A general procedure for FORM/SORM is proposed which includes three steps: i.e. point ®tting
limit state surface, computation of the sum of the principal curvatures Ks and failure probability com-
putation according to the range of Ks. The procedure is demonstrated by several examples. # 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

A fundamental problem in structural reliability theory is the computation of the multi-fold
probability integral

Pf � Prob G X� �40� � �
�
G x� �40

f X� �dX �1�

where X � X1;...;Xn� �T, in which the superposed T=transpose, is a vector of random variables
representing uncertain structural quantities, f�X� denotes the joint probability density function of
X;G�X is the performance function de®ned such that G�X�40, the domain of integration,
denotes the failure set, and Pf is the probability of failure. Di�culty in computing this probability
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has led to the development of various approximation methods [1], of which the ®rst-order relia-
bility method (FORM) is considered to be one of the most reliable computational methods [2].
FORM is an analytical approximation in which the reliability index is interpreted as the mini-

mum distance from the origin to the limit state surface in standardized normal space (u-space)
and the most likely failure point (design point) is searched using mathematical programming
methods [3,4]. Because the performance function is approximated by a linear function in u-space
at the design point, accuracy problems occur when the performance function is strongly nonlinear
[5,6]. The second-order reliability method (SORM) has been established as an attempt to improve
the accuracy of FORM. SORM is obtained by approximating the limit state surface in u-space at
the design point by a second-order surface [5]. In SORM, the di�cult, time consuming portion is
the computation of the matrix of second-order derivatives, i.e. the Hessian matrix. To address
this problem, an e�cient point-®tting algorithm [7,8] is derived, in which the major principal axis
of the limit state surface and the corresponding curvature are obtained in the course of obtaining
the design point without computing the Hessian matrix; and an alternative point-®tting SORM
was developed [16], in which the performance function is directly point-®tted using a general form
of the second-order polynomial of standard normal random variables.
If the second-order surface in u-space has been obtained, the failure probability is given as the

probability content outside the second-order surface. A numerical integration method was
developed by Tvedt [9], and an importance sampling updating method was developed by
Hohenbichler et al. [10]. Since the exact computation of the failure probability is quite compli-
cated, numerous studies have contributed to develop some approximations that have closed
forms, the accuracy of which is generally dependent on the three parameters of the limit state
surface, i.e. the curvature radius R at the design point, the number of random variables n and the
®rst-order reliability index �F [15]. Breitung [11] has derived an asymptotic formula which
approaches the exact failure probability as �F ! 1 with �Fki, where ki is a principal curvature at
the design point, ®xed. Tredt [12] has derived a three-term approximation in which the last two
terms can be interpreted as correctors to Breitung's formula. More accurate closed form formulas
were derived using McLaurin series expansion and Taylor series expansion by Koyluoglu and
Nielsen [13] and Cai and Elishako� [14]. These formulas generally work well in the case of a large
curvature radius and a small number of random variables. However, the rotational transforma-
tion and eigenvalue analysis of Hessian matrix for obtaining the principal curvature at the design
point, are quite complicated to engineers. To address this, a simple approximation and an
empirical second-order reliability index were developed [15], and an IFFT method is proposed as
an accurate method to compute the failure probability for the case of extremely small curvature
radii or for the case in which the limit state surface can not be approximated by a paraboloid at the
design point [16]. Although the ranges of parameters R, n, and �F for which the simple parabolic
approximation and empirical reliability index are accurate, are much larger than those of other
SORM formulas, the numerical ranges in detail have not been given. An understanding of these
numerical ranges is important because it can help us to judge when the IFFT method may be used.
Another essential problem is the applicable range of FORM. The problem of its accuracy has

been examined by many studies through a large number of examples, but the parameter ranges in
detail for which it is accurate enough have not been reported according to our knowledge.
Without these ranges in detail, it is inconvenient for an engineer to judge whether the results of
FORM are accurate enough or not, and when SORM or a more accurate method should be used.
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The object of the present paper is to investigate the parameter ranges for which ®rst- and second-
order reliability approximations are accurate enough, and propose a general procedure for
FORM/SORM.

2. Review of the simple parabolic approximation

The second-order Taylor expansion of a performance function in u-space G(U) at design point
U* can be expressed as [5,9]:

G�U� � �F ÿ �TU� 1

2
�UÿU��TB�UÿU�� �2�

where

� � rG U�� �
rG�U���� �� B � r

2G�U��
rG�U���� �� �F � �TU�

� is the directional vector at the design point in u-space, B is the scaled second-order derivatives
of G(U) at U*, known as the scaled Hessian matrix, and �F is the ®rst-order reliability index.
The sum of the principal curvatures of the limit state surface at the design point can be

expressed as [15]:

KS �
Xn
j�1

bjj ÿ �TB� �3�

Approximating the limit state surface by a rotational parabolic surface of diameter 2R, where
R is the average principal curvature radius expressed as:

R � nÿ 1

Ks
�4�

The performance functions in u-space, can be expressed simply as:

G�U� � ÿ�un ÿ �F� � 1

2R

Xnÿ1
j�1

u2j �5�

The empirical second-order reliability index corresponding to Eq. (5) was obtained as:

�S � ÿ�ÿ1 ��ÿ�F� 1� ���F�
R��ÿ�F�

� �ÿnÿ1
2 1� 2Ks

10�1�2�F�

� �264
375 Ks50 �6a�
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�s � 1� 2:5Ks

2nÿ 5R� 25�23ÿ 5�F�=R2

� �
�F � 1

2
Ks 1� Ks

40

� �
Ks < 0 �6b�

where

Ks: The total principal curvature of the limit state surface described in Eq. (3).
R: The average principal curvature radius described in Eq. (4).
n: The number of random variables.
�F: The ®rst-order reliability index.
�S: The second-order reliability index.

3. Applicable range for FORM/SORM

3.1. Applicable range for FORM

Considering that the accuracy in engineering application is generally taken as 5%, the follow-
ing equation is used in the present paper to examine the applicable range for FORM:

��ÿ�S� ÿ��ÿ�F�
�� ��40:05��ÿ�S� �7�

where

�F: The ®rst-order reliability index.
�S: The second-order reliability index.

Since FORM is only accurate in the case of very large curvature radius and small number of
random variables, in the ranges of parameter R, n and �F for examining the accuracy of FORM,
the failure probability is not sensitive to the kind of limit surface (having the same values of R, n
and �F) and the empirical reliability indices Eqs. (6a) and (6b) are accurate enough. Therefore,
the Eqs. (6a) and (6b) are used as the second-order reliability index �S in Eq. (7).
From computations and regressions of Eq. (7), the empirical range of the total principal

curvature for which FORM is accurate enough as to be satis®ed with Eq. (7) is obtained as

Ksj j4 1

10�F
�8a�

or Rj j510�F�nÿ 1� �8b�

where
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Ks: The total principal curvature of the limit state surface described in Eq. (3).
R: The average principal curvature radius described in Eq. (4).
n: The number of random variables.

The empirical applicable range of FORM obtained from Eq. (8) with respect to the number of
random variables is shown in Fig. 1. along with the computational range directly obtained from
Eq. (7), where the ®rst-order reliability index is taken to be 4. From Fig. 1, one can see that the
empirical applicable range obtained from Eq. (8) almost coincides with the computational range
directly obtained from Eq. (7).
The empirical applicable range of FORM obtained from Eq. (8) with respect to the ®rst-order

reliability index is shown in Fig. 2 in the range of �F is equal to 1±5, along with the computational
range directly obtained from Eq. (7), where the number of random variables is taken to be 21.
From Fig. 2, one can see that the empirical applicable range obtained from Eq. (8) can be used as
approximation of the computational range directly obtained from Eq. (7), especially for a large
value of the ®rst-order reliability index. Note, however, that for an extremely small value of �F, the
empirical range obtained from Eq. (8) tends to provide a large error and give a larger range than
the computational range. The errors are not as serious as they may at ®rst seem because of the
extremely small values of �F which are out of the range of common use in engineering.

3.2. Applicable range of the simple parabolic approximation

It is very di�cult to investigate the applicable range of the simple approximation reviewed in
Section 2. However, if a range for which the failure probability is not sensitive to the kind of limit
surfaces having the same parameters of curvatures, number of variables and ®rst-order reliability
index, the simple approximation of SORM is, of course, accurate in this range. For this purpose,
two typical second-order limit state surfaces, i.e. parabolic surface and spherical surface, are
investigated in the present paper. The simple approximation of SORM is considered accurate
enough when the failure probabilities obtained using the two kinds of limit state surfaces are
satis®ed with the following equation.

Pfpara ÿ Pfsph

�� ��40:05Pfpara �9�

where

Pfpara: The failure probability obtained from parabolic limit state surface.
Pfsph: The failure probability obtained from spherical limit state surface.

For investigation on Eq. (9), the performance function of the parabolic limit state surface is
taken to be Eq. (5) which is a combination of a standardized normal random variable and a
random variable of a central chi-square distribution with n-1 degrees of freedom [5]. The failure
probability Pfpara is computed using

Pfpara �
�1
0

�
t

2R
ÿ �F

� �
fx2

nÿ1
�t�dt �10�
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Fig. 2. Comparisons between the computational and empirical applicable range of FORM (with respect to ®rst-order
reliability index).

Fig. 1. Comparisons between the computational and empirical applicable range of FORM (with respect to number of

variables).
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where fx2
nÿ1
�t� is the probability density function of central chi-square distribution with n-1 degrees

of freedom.
The performance function of the spherical limit state is expressed as:

G�U� � �
Xn
j�1
�uj ÿ lj�2 ÿ R2

" #
�11�

The limit state surface of Eq. (11) is a hypersphere with radius R and center at point
(lj; j � 1; . . . ; n). The sign + expresses the limit state surface is convex to the origin and -
expresses that concave to the origin. y � G�U� is a random variable having the non-central chi-
squared distribution [17] having a non-central parameter of

�2 �
Xn
i�1

l2i � �R� �F�2 �12�

and the exact value of the failure probability Pfsph is computed directly using this distribution
[18,19].
From computations and regressions of Eq. (9), the empirical range of curvatures for which

Pfpara and Pfsph are satis®ed with Eq. (9) is obtained as

ÿ 1

10
�2� 0:6�F�

�����������
nÿ 1
p

� 3
� �

4Ks4
2

5

�����������
nÿ 1
p

� 3�F
� �

�13�

The computational and empirical applicable range of the simple parabolic approximation with
respect to the number of random variables are shown in Fig. 3. where the dashed lines present the
results in the case of �F � 3 and the solid lines those of �F � 2. Fig. 3 shows that the empirical
applicable range obtained from Eq. (13) can be used as approximation of the computational
range directly obtained from Eq. (9), in all the cases that are combined by KS>0, KS<0, �F=2
and �F � 3.

3.3. Applicable range of the empirical second-order reliability index

The applicable range of the empirical second-order reliability index is investigated using the
following equation:

Pfpara ÿ� ÿ�s� ��� ��40:05Pfpara �14�

where

Pfpara: The failure probability obtained from parabolic limit state surface.
�s: The empirical second-order reliability index described in Eq. (6)

The numerical solutions for Eq. (14) for �F � 2 are depicted in Fig. 4 and those for �F � 3 are
depicted in Fig. 5 with comparison with the applicable range of the simple parabolic approximation.
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Figs. 4 and 5 show that the applicable range of the simple parabolic approximation are almost
included in the applicable range of the empirical second-order reliability index. That is to say, if a
problem can be solved using the simple parabolic approximation, the empirical second-order
reliability index is also appropriate for the failure probability computation.

4. General procedure for FORM/SORM

According to the discussion above, the general procedure for FORM/SORM is suggested as
three steps: i.e. point ®tting limit state surface, computation of the total principal curvature KS

and failure probability computation according to the range of KS.

4.1. Step 1, point ®tting limit state surface

Consider the limit state surface in standard normal space expressed by a performance function
G(U). The point-®tted performance function is expressed as a second-order polynomial of stan-
dard normal random variables, including 2n+l regression coe�cients.

G0�U� � a0 �
Xn
j�1

juj �

Xn
j�1

lju2j �15�

where a0; 
j, and lj are 2n+1 regression coe�cients.

Fig. 3. Applicable range of the simple approximation of SORM.
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Using the iterative point-®tting procedure [16] which is essentially an application of the
response surface approach [20, 21] in standard normal space, the regression coe�cients a0; 
j and
lj can be determined from linear equations of a0; 
j and lj obtained at each ®tting point.

4.2. Step 2, computation of the total principal curvature

After the point-®tted performance function is obtained, the total principal curvature of the
limit state surface at the design point U* can be computed using Eq. (3). For Eq. (15) Ks is
directly expressed as:

Ks � 2

rG0j j
Xn
j�1

lj 1ÿ 1

rG0j j2 
j � 2lju�j
� �2� �

�16�

where

rG0�� �� �
����������������������������������Xn
j�1


j � 2lju�j
� �2vuut �17�

4.3. Step 3, computation of the failure probability

If the absolute value of Ks is so small that it is satis®ed with

Ksj j4 1

10�F

Fig. 4. Applicable range of the empirical reliability index (�F � 2).
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the failure probability obtained from the FORM corresponding to Eq. (15) is accurate enough.
If the value of Ks satis®es

ÿ 1

10
�2� 0:6�F�

�����������
nÿ 1
p

� 3
� �

4Ks4
2

5

�����������
nÿ 1
p

� 3�F
� �

the failure probability should be computed using the empirical second-order reliability index
described in Eq. (6).
If the absolute value of Ks is so large that it does not satisfy any case above, the simple para-

bolic approximation will not be accurate and the failure probability should be computed using
more accurate methods such as the IFFT method [16].
The characteristic function corresponding to the point-®tted performance Eq. (15) is expressed as:

Q�t� � exp�ia0t�
Yn
j�1

exp t2
2j =2�1ÿ 2itlj�
� �

������������������
1ÿ 2itlj

p �18�

and the failure probability can be readily obtained as:

Pf � 1ÿ
XNÿ1
r�1

f�xr� � f�xr�1�
2

�x �19�

Fig. 5. Applicable range of the empirical reliability index (�F � 3).
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where

f�xr� � tN ÿ t1

2�
����
N
p Fr exp�it1xr� for xr50 �20�

xr � 2��rÿ 1�
tN ÿ t1

; �x � 2�=�tN ÿ t1� �21�

Fr; r � 1; . . . ;N, are the inverse Fourier coe�cients corresponding to the discrete values
Q�ts�; s � 1; . . . ;N, of the Eq. (18) evenly distributed in the interval of �t1; tN�;N is the number of
discrete data.
In order to visualize the applicable range of FORM/SORM, consider a limit state surface

having three random variables and the ®rst-order reliability index of 1.5. From Eqs. (8) and (13),
the range of Ks for which FORM is accurate enough is obtained as ÿ 0:0674Ks40:067, and that
for which SORM is accurate enough is obtained as ÿ 0:714Ks42:37. For a limit state surface
that have negative curvatures, the corresponding range of the absolute curvature radius is shown
in Fig. 6, from which one can see that FORM is accurate enough for Rj j530, SORM is accurate
in the range of Rj j52:8, when Rj j < 2:8, the IFFT method is required. For a limit state surface

Fig. 6. Applicable range of the FORM/SORM with respect to the curvature radius.
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that have positive curvatures, one can similarly obtain that FORM is accurate enough for
R530, SORM is accurate in the range of R50:85, when R < 0:85, the IFFT, method is
required.
It should be noted that the discussions above are based on the assumption that all the curva-

tures at the design point have the same sign or are relatively evenly distributed if they have dif-
ferent signs. When the curvatures at the design point have di�erent signs and extremely unevenly
distributed, no SORM formulas of closed form can give appropriate results as investigated in
Ref. [15]. In this case, the ranges of applicability of FORM/SORM described above can not be
used and the IFFT method is generally required.

5. Numerical examples

5.1. A simple example where FORM is accurate enough

The ®rst example considers the following performance function, an elementary reliability
model used in many situations,

G�X� � Rÿ S �22�

where R is a resistance and S is a load. R is a normal random variable having the coe�cient of
variance of 0.2, S is a Weibull random variable having a mean value of 100 and coe�cient of
variance of 0.4. In the following investigations, the exact results are obtained using MCS for
5,000,000 samplings.
Using steps 1 and 2 of the proposed procedure, i.e. point-®tting SORM [16], the total principal

curvature of the limit state surface is obtained as Fig. 7, the limit state surface is almost linear and
the total principal curvature is inside the range for which FORM is accurate enough. The varia-
tion of the reliability index with respect to the central factor of safety obtained using FORM,
SORM and MCS are shown in Fig. 8, one can see that the reliability indices obtained by all the
methods are almost the same.

5.2. A case where FORM is inadequate but SORM is accurate enough

The second example considers the same performance function in Example 1, but uses di�erent
kinds of distribution, i.e. R is a normal random variable having the coe�cient of variance of
0.2, S is a lognormal random variable having a mean value of 100 and coe�cient of variance
of 0.4.
Using steps 1 and 2 of the proposed procedure, the total principal curvature of the limit

state surface is obtained as Fig. 9. The limit state surface is much more nonlinear than that in
Example 1, so that the total principal curvature is outside the applicable range of FORM but
inside that of SORM. The variation of reliability index with respect to central factor of safety is
shown in Fig. 10. From Fig. 10, one can see that the FORM has signi®cant errors for this
example although the performance function is very simple. The empirical reliability index has a
very good agreement with those obtained by MCS.
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Fig. 7. Sum of the principal curvatures for Example 1.

Fig. 8. Variation of reliability index with respect to central factor of safety for Example 1.
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Fig. 9. Sum of the principal curvatures for Example 2.

Fig. 10. Variation of reliability index with respect to central factor of safety for Example 2.
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5.3. A case where both FORM and SORM are inadequate

The third example considers the following performance function in standardized space, the
general case of the practical examples used by Cai [14] and Koyluoglu [13] in their investigations
of SORM.

G�U� � r2 ÿ
Xn
j�1

uj ÿ lj
ÿ �2 �23�

The limit state surface of Eq. (23) is a hypersphere concave to the origin having radius r. y=G�U�
is a random variable having the non-central chi-square distribution and the exact values of the
failure probability are computed directly using this distribution [19]. In the following investiga-
tions, the curvature radius is taken to be 10.0 and the ®rst-order reliability index is taken to be
1.5.
The total principal curvature Ks of the limit state surface is obtained as Fig. 11. Ks is outside

the applicable range of FORM even when the number of random variables is equal to 2. Ks is
inside the applicable range of SORM when n is under 15 and outside it when n is above 15. The
variation of reliability index with respect to the number of variables is shown in Fig. 12. From
Fig. 12, one can see that the FORM has signi®cant errors for this example. The empirical relia-
bility index has a good agreement with those obtained by MCS when n is under 15. When n is
larger than 15, the empirical reliability index gives signi®cant errors. The IFFT method always
gives good results.

5.4. Example 4

Consider the following performance functions which have been used as example 1 by Der
Kiureghian [7].

G�X� � x1;�2x2 � 2x3 � x4 ÿ 5x5 ÿ 5x6 �24�

The variables xi are statistically independent and lognormally distributed with the means
�1 � . . . � �4 � 120; �5 � 50; �6 � 40, and standard deviations �1 � . . . � �4 � 12; �5 � 15 and
�6 � 12.
From the ®rst step of the procedure, the point-®tted performance function is obtained as

G0�u� � 273:08� 11:91u1 � 23:81u2 � 23:81u3 � 11:91u4 ÿ 54:82u5 ÿ 51:00u6 �25�

� 0:584u21 � 1:147u22 � 1:147u23 � 0:584u24 ÿ 17:91u25 ÿ 12:08u26

with corresponding ®rst-order reliability index �F � 2:3483 and failure probability PF � 0:00943.
Using the second step of the procedure, the total principal curvature is obtained as Ks � ÿ0:1507
with corresponding average curvature radius R � ÿ33:1704.
Using Eqs. (8) and (13), the Ks range for which FORM is accurate enough is obtained as
jKsj<0.0426, and that for which SORM is accurate enough is obtained as ÿ1.0623<Ks<3.7123.
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Fig. 11. Sum of the principal curvatures for Example 3.

Fig. 12. Variation of reliability index with respect to number of variables for Example 3.

110 Y-G. Zhao, T. Ono / Structural Safety 21 (1999) 95±112



One can see that the total principal curvature of Eq. (25) is inside the Ks range for which SORM
is accurate enough. Using Eq. (6), the empirical second-order reliability index is obtained as �s �
2:2732 with corresponding failure probability PF � 0:01151 that is a good approximation of the
exact result PF � 0:0121 [7].

6. Conclusions

For practical application of FORM/SORM, a general procedure is proposed which includes
three steps: i.e. point ®tting limit state surface, computation of the total principal curvatures Ks

and failure probability computation according to the range of Ks.
The parameter ranges of R, n and �F for which FORM/SORM is accurate enough are investi-

gated, the results can help us to judge when FORM is accurate enough, when SORM is required
and when an accurate method such as IFFT method is required.
It should be noted that the procedure proposed in this paper can be used only for limit state

surfaces that have only one design point, a restriction that also applies to other FORM/SORM
methods. Otherwise local convergence may occur, and error results may be yielded.
It should be also noted that the ranges of applicability of FORM/SORM can not be used in the

case that the curvatures at the design point have di�erent signs and extremely unevenly dis-
tributed. For this case, the IFFT method is generally required.
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