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SUMMARY

Response uncertainty evaluation and dynamic reliability analysis corresponding to classical stochastic
dynamic analysis are usually restricted to the uncertainties of the excitation. The inclusion of the parameter
uncertainties contained in structural properties and excitation characteristics has become an increasingly
important problem in many areas of dynamics. In the present paper, a point estimate procedure is proposed
for the evaluation of stochastic response uncertainty, and a response surface approach procedure in
standard normal space is proposed for analysis of time-variant reliability analysis for hysteretic MDF
structures having parameter uncertainties. Using the proposed procedures, the response uncertainties and
time-variant reliability can be easily obtained by several repetitions of stochastic response analysis under
given parameters without conducting sensitivity analysis, which is considered to be one of the primary
di$culties associated with conventional methods. In the time-variant reliability analysis, the failure prob-
ability can be readily obtained by improving the accuracy of the "rst-order reliability method using the
empirical second-order reliability index. The random variables are divided into two groups, those with CDF
and those without CDF. The latter are included via the high-order moment standardization technique.
A numerical example of a 15F hysteretic MDF structure that takes into account uncertainties of four
structural parameters and three excitation characteristics is performed, based on which the proposed
procedures are investigated and the e!ects of parameter uncertainties are discussed. Copyright ! 1999
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The response uncertainty evaluation and dynamic reliability analysis corresponding to the
classical stochastic dynamic analysis are usually restricted to the uncertainties of the excitation.
However, it has recently been recognized that the model parameters such as geometry material
properties and excitation characteristics, are often poorly understood and the inclusion of these
parameter uncertainties has become an increasingly important problem in many areas of



dynamics.!"# The present paper attempts to evaluate the response uncertainty and dynamic
reliability of hysteretic MDF structures a!ected by the parameter uncertainties included in the
structural properties and excitation characteristics.

For response uncertainty evaluation, early research monographs in this "eld, addressing both
static and dynamic problems, include the structural parameters by adopting series expansions in
order to evaluate the structural response.!$% In the framework of dynamic stochastic response,
studies of uncertain linear systems with deterministic loads may be classi"ed into statistical
frequency-domain analysis& and time-domain analysis.' The conventional approach in the
dynamic analysis of structural systems with stochastic uncertainties is based on the series
expansion of stochastic quantities with respect to stochastic uncertainties and evaluates the
"rst- and second-order moments of the response by solving deterministic equations once the
perturbation method is applied. Some recent studies($) have shown that assuming the "rst-order
approximation of the mean response to be coincident with the deterministic solutions, obtained
by "xing the stochastic mean value, can cause signi"cant error when the coe$cients of variation
of stochastic parameters are relatively large. Therefore, in order to solve static problems, an
improved approach that takes into account the "rst- and second-order probabilistic information
of stochastic parameters for computing the mean solution has been proposed. In the improved
approach, the variance and covariance of the solutions are calculated using the improved mean
solution rather than the mean solution.

Another improved approach!* has been proposed for evaluating in the time domain the
statistical moments of the response of linear systems subject to time-variant deterministic input.
This method requires (1) a second-order Taylor series expansion with respect to the uncertain
parameters, (2) introduction of the state vector space in order to obtain the "rst-order di!erential
equations and (3) adoption of the improved statistical moment into the "rst-order deterministic
di!erential equations.

All of these methods, which are referred to here as series expansion methods, have the following
weaknesses:

(1) The sensitivity of the response is required. Obtaining the sensitivity of the response,
however, is not always easy because the response analysis includes complicated procedures
such as eigenvalue analysis and the solution of line equations.

(2) Application to non-linear systems is di$cult. This is partially due to the fact that the
sensitivity analysis in a non-linear system is much more di$cult than that in a linear system.

(3) Only the case of deterministic input, or the parameter uncertainties contained in structural
properties are considered. In reality however, evaluation of response uncertainty due to
both the excitation characteristics and the structural properties under random process
input is also required, which is complicated if done using series expansion methods.

In order to evaluate the uncertainties of stochastic response due to parameter uncertainties, the
present paper proposes a point estimation procedure, in which the stochastic response, including
parameter uncertainties, is obtained by several repetitions of stochastic response analysis under
given parameters. In the case of non-linear dynamic analysis under stochastic excitation, the
proposed procedure can be easily performed, without conducting any sensitivity analysis, which
is considered to be one of the primary di$culties associated with conventional methods.

On the other hand, for time-variant reliability analysis, to include parameter uncertainties, one
can "rst solve the problem with given parameters and then integrate over the system parameters
to "nd the overall reliability. However, the computation could become excessive since repeated
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solutions of stochastic structural response are required, and so an approximate method having
good accuracy and numerical e$ciency is needed. For a linear oscillator, a First-Order Reli-
ability Method (FORM) was proposed by Hohenbichler and Rackwitz in which the distribution
of the maximum peak of the response is used.!! This method has been used in the case of
non-stationary excitation by Balendra and Quek.!%$!+ For general problems, reliability
estimation methods have been proposed by Gueri and Rackwitz,!, for which auxiliary variables
are introduced so that FORM can be used. A more general discussion of time-variant structural
reliability analysis is provided by Wen and Chen,, where only one auxiliary random variable
is introduced and a performance function was proposed. This method has been applied to
system reliability by Wen and Chen.!#$!& Incorporating these methods, a nested FORM has
been proposed by Madsen and Tvedt!' based on the discussion of the calculation of the failure
probability with given parameters. In these methods, which enable an evaluation of the
dynamic structural reliability that includes parameter uncertainties to be performed
using FORM, calculating the gradients of the performance function is an important step.
Because it is not always easy to obtain these gradients,!( a spectral stochastic "nite
element formulation using polynomial chaoses has been proposed%$+ and the Response Sur-
face Approach (RSA) has recently been introduced!) to avoid the di$culties in obtaining
the gradients.

Because time-variant reliability in the above methods is conducted using FORM, the problem
of accuracy will arise for the case of a strong non-linear performance function. To improve the
analytical accuracy, the Second-Order Reliability Method (SORM) may be used, but the compu-
tation of Hessian matrix and its the rotational transformation are necessary.%*$%! On the other
hand, in all the above methods, the random variables that express the parameter uncertainties are
generally expressed as continuous random variables that have a known Cumulative Distribution
Function (CDF). In reality however, due to the lack of statistical data, the CDF of some random
variables may be unknown, and their probabilistic characteristics may be expressed using only
statistical moments.

In order to improve the two weaknesses described above, a computational procedure of RSA
in standard normal space is proposed. In this procedure, the time-variant reliability analysis
is conducted through several repetitions of dynamic reliability analysis with given parameters,
and without any sensitivity analysis. Because the response surface is directly obtained
as a polynomial of standard normal random variables, neither a complicated computation of
the Hessian matrix is needed, nor is it necessary to carry out its rotational transformation
and eigenvalue analysis. In order to include the random variables having no CDF, the
random variables included in the analysis model are divided into two groups, those
having continuous CDF, such as sti!ness, damping, and strength, and those having no CDF,
such as excitation characteristics. Random variables having no CDF are included via the
High-Order Moment Standardization Technique (HOMST), the use of which requires almost
no extra e!ort.

2. NON-LINEAR STOCHASTIC RESPONSE AND RELIABILITY ANALYSIS
WITH DETERMINISTIC PARAMETERS

The uncertainties in classical stochastic dynamic analysis are usually restricted to excitation. For
hysteretic MDF structures, the non-linear random vibration analysis is generally conducted
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using equivalent linearization,%%$%+ and the equivalent sti!ness and equivalent damping ratio are
determined according to random vibration theory using the following equations%,

K
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where K
!

is the equivalent sti!ness, #
!

is the equivalent damping ratio for the nth mode,
" is the sti!ness ratio, ! is the ductility ratio, K

*
is the initial sti!ness and #

*
the damping

ratio.
Assume the ground acceleration is idealized as a segment of "nite duration of a stationary

Gaussian process having mean of zero. Using the random mode decomposition method com-
bined with the mean-value response spectrum,%#"%' the deviation of the stochastic response is
obtained as
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where B
"
is the participation factor of the ith mode obtained by dynamic analysis of structures,

%
*$ "#

is the correlation coe$cient between the ith and jth modes, which can be obtained from
random vibration analysis, and &

*$""
is the spectral moment of ith mode, which can be obtained

from the mean-value response spectrum.
Using the result of the standard deviation of response $

"
obtained from random vibration

analysis, the mean value and standard deviation of the maximum response are obtained using the
following equations:
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where '
#

and $
#

are the mean value and standard deviation, respectively, of the maximum
response, ( is the mean cross ratio, and D is the duration of ground motion.

After obtaining the deviation of the stochastic response, failure probability is de"ned as the "rst
passage probability of the maximum response, the probability distribution of which is assumed to
be given by

F
"
(u)"exp #!(D exp !!1

2 $ u
$
"
%%"& (6)

where ( is the cross ratio, and $
"
is the standard deviation of the stochastic response obtained

from stochastic vibration analysis.
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3. STOCHASTIC RESPONSE INCLUDING PARAMETER UNCERTAINTIES

3.1. Stochastic response with parameter uncertainties

In the analysis described in the previous section, all input parameters, including structural
properties and excitation characteristics, are assumed to be deterministic. When these parameter
uncertainties are included in the analysis, the parameters are expressed as random variables
X and the maximum response can be expressed as a function of X

R
#$%

"R
#
(X) (7)

In evaluating the response uncertainty due to the parameter uncertainties, the method gener-
ally employed is to expand R

#$%
to a Taylor series and conduct the evaluation using a "rst-order

approximation!$%( as shown below:
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where $
$
is the standard deviation of x

$
and %

"#
is the correlation coe$cient of x

$
and x

#
.

No explicit description of R
#$%

is given in random vibration theory (only its mean value '
#

and
standard deviation $

#
, expressed by equations (4) and (5), are given). The gradients of R

#$%
are

di$cult to obtain because the random vibration analysis is non-linear and the gradient analysis
procedure includes several complicated procedures, such as the inverse distribution function,
eigenvalue analysis, the computation of the participation factor and the spectral moments.!( In
order to avoid the di$culties associated with the computation of gradients, the present paper will
evaluate the mean value '

-
and standard deviation $

-
of R

#$%
utilizing the computational results

of equations (4) and (5).
After including the parameter uncertainties described by random variables X, the mean value

'
#

and standard deviation $
#
, expressed in equations (4) and (5) become functions of X, denoted

by '
#
(X) and $

#
(X), respectively. For a group of given values of X, the values of the functions

'
#
(X) and $

#
(X) can be obtained using the method described in the previous section. To include

the uncertain parameters X, functions '
#
(X) and $

#
(X) can be computed for given X, after which

these functions can be integrated over the entire area for which X is de"ned to obtain the mean
value '

-
and standard deviation $

-
of the maximum response.

Since
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where

E[ ) (X)]"'
%

) (X) f (X) dX (13)

The distribution f (R
#

+ X) is presented only in order to facilitate description, and is not required
for the evaluation.

In order to evaluate E['
#
(X)], E['%

#
(X)], and E[$%

#
(X)], Monte-Carlo simulation or direct

integration may be used. A large number of repetitions of non-linear stochastic analysis is
required. Another general approximation is obtained from the Taylor expansion of these
functions,%( in which the previously described di$culties in the computation of derivatives
described above will be encountered. The response surface approach can be used to avoid the
di$culties in computation of derivatives. However, according to our computational experience,
the results of this approximation depend strongly on the "tting points. Therefore, an approxima-
tion method that is both e$cient and accurate is required. The present paper evaluates E['

#
(X)],
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#
(X)], and E[$%

#
(X)] using the method of point estimates.

3.2. Concept of point estimates

The method of point estimates was proposed by Rosenblueth%) for estimating the "rst few
moments of a function of random variables. This method uses a weighted sum of the function
evaluated at a "nite number of points. The weights and points at which the function is evaluated
are chosen as the weights and points at which the variable itself must be evaluated to give the
correct "rst few moments of the variable itself, i.e. the estimating points x
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For a function of y"y (x), the kth central moment of y can be calculated using x
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where the mean value and standard deviation of y"y (x) are as follows:
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3.3. Point estimates for a function of n variables

The procedure leading to equations (17)}(26) has been generalized to a function of multiple
variables Z"G(X), where X"x

!
, x

%
,2,x

!
. The joint probability density is assumed to be

concentrated at points in the 2! hyperquadrants of the space de"ned by X. For a large n, the
number of function recalls of G (X) will be too large for practical applications. Rosenblueth%)
approximated G(X) using the following function:
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and Idota et al.+! approximated G(X) using the following function:
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The mean value and standard deviation of approximation (27) are expressed as
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The mean value and standard deviation of approximation (28) are expressed as

'
)
" !

!
".!

('
)"

!G*)#G* (33)

$%
)
" !

!
".!

$%
)"

(34)

RESPONSE UNCERTAINTY AND TIME-VARIANT ANALYSIS OF MDF STRUCTURES 1193

Copyright ! 1999 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 28, 1187}1213 (1999)



where '
)"

, and $
)"

are the mean value and standard deviation, respectively, of Z
"
which are

obtained using equations (25) and (26).
Using equations (27)}(34), only 2n#1 function calls of G(X) are needed for computation of

mean value and standard deviation of G(X) having n random variables.
Substituting the functions '

#
(X), '%

#
(X) and $%

#
(X) in the previous section for G(X) in equation

(27) or equation (28), point estimates for E['
#
(X)], E['%

#
(X)] and E[$%

#
(X)] can be obtained, and

the mean value '
-

and deviation $
-

of the maximum response can be evaluated.

3.4. Investigation on the method of point estimates

In the "rst example, consider the following function of a standard normal random variable:

y"exp(u/#&) (35)

where & and / are parameters. In the present example, &"1)5 and /"0)1}0)6 are assumed.
The variable y is a lognormal variable with parameter & and /, and the "rst four moments are

expressed exactly as

'
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"
,
"0,#20+#30%!3 (36d)

where

0"exp(/%), (36e)

"
+

and "
,

are the third and fourth order dimensionless central moments, i.e. skewness and
kurtosis of y, respectively.

The "rst four moments obtained using equations (24), (25) and (26) are depicted as (a), (b), (c)
and (d) in Figure 1 along with the corresponding theoretical values. Figure 1 reveals that the
mean value and standard deviation obtained by point estimates are in very good agreement with
the exact values, but for third- and fourth-order moments, the results obtained by point estimates
cannot be used as an approximation of the exact values.

In the second example, consider the following function of a lognormal normal random
variable:

y"ln(x) (37)

where x is a lognormal variable with parameters & and #. In the present example, &"1)5 and
/"0)1}0)5 are assumed.

The variable y is a normal random variable and the "rst four moments can be readily obtained
as '"&, $"/, "

+
"0, "

,
"3, exactly.

The "rst four moments obtained using equations (24), (25) and (26) are depicted as (a), (b), (c),
and (d) in Figure 2 along with the corresponding theoretical values. Figure 2 shows that the ' and
$ obtained using point estimates are in very good agreement with the exact values when / is
assumed to be small (below 0)4). The accuracy of the results obtained using point estimates
decreases as the order of the moments to be evaluated increases. For "

+
and "

,
, the results

obtained using point estimates cannot be used as an approximation of the exact values. Also note
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Figure 1. Point estimates for Example 1

that if the deviation of the random variable x is large, the estimating point x obtained using
equation (20) becomes negative, and is therefore out of the de"nition area of the variable.

These two examples show that point estimates are only applicable for lower-order moments of
functions of random variables with small deviation. Since the evaluation of response uncertainty
described in Section 3.1 includes only the mean value of the functions '

#
(X), '%

#
(X) and $%

#
(X),

point estimates are applicable in the present study.

4. TIME-VARIANT RELIABILITY ANALYSIS METHOD

4.1. Extensive xrst-order reliability method

In order to include the parameter uncertainties, one can "rst solve the problem with given
parameters and then integrate over the system parameters to "nd the overall reliability, provided
the probability information for the parameters is available. The integral is shown as

P
2
"'X

P
&
(X) f (X) dX (38)
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Figure 2. Point estimates for Example 2

where P
&
(X) is the conditional failure probability for a given X, which is evaluated using

state-of-the-art techniques, and f (X) is the joint probability density function of X.
However, the computation could become excessive since repeated solutions of stochastic

structural response are required, and so an approximate method having good accuracy and
numerical e$ciency is needed. Therefore, Wen and Chen, developed the following performance
function in standard normal space, in which only one auxiliary random variable is introduced.

G(X, u
!'!

)"u
!'!

!1"![P
&
(X)] (39)

The gradients of the performance function with respect to U are given by

#*G
*u

"
&
")!

"![J"!
!

]3 #*[P
&
(X)

*x
"
&
")!

(40)

where U is the standard normal variable vector transformed from X by Rosenblatt transforma-
tion, and u

!'!
is a standard normal random variable independent of U. [J] is the Jacobian matrix

for the transformation of variables.
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This performance function enables an evaluation of the dynamic structural reliability that
includes parameter uncertainties to be performed using FORM and is referred to as Extensive
FORM (EFORM) in the present paper. Calculation of the gradients of the performance function
is an important step of the EFORM. However, it is not always easy to obtain these gradients,!(
especially for the case where non-linearity of the structural performance is considered. In order
to avoid such di$culties in obtaining the gradients, in this paper the performance function is
approximated using Response Surface Approach (RSA).!)

4.2. Response surface approach in standard space

RSA is a statistical analysis method that examines the relationship between experimental
response and variations in the values of input variables. The basic concept of RSA is to replace the
original implicit performance function by an approximated explicit function (generally a second-
order polynomial) expressed in terms of basic random variables.+%"+, For time-variant reliability
analysis, Yao and Wen!) have introduced RSA to avoid the sensitivity analysis required in
EFORM. However, because the response surface function is expressed as a polynomial of basic
random variables in original space, when the computational accuracy of failure probability
is improved by using SORM, it is necessary to compute the Hessian matrix, and to carry out
its rotational transformation and eigenvalue analysis. Alternatively, one can use the point-"tting
SORM approximation+# after the response surface has been obtained, but additional iteration
e!ort will be needed.+& In order to improve on this weakness, in this paper the performance
function is directly approximated in standard normal space. This has the following two
advantages:

(1) Because the response surface function is expressed directly as a second-order polynomial of
standard normal random variables, it is very simple to obtain the second-order derivative
matrix (the scaled Hessian matrix) and compute the failure probability using the simple
approximation of SORM.+#$+'

(2) In RSA, "tting points are controlled by their distance from the original point, which is
generally expressed as a multiple of the standard deviation of the random variable. If the
response surface function is expressed as the function of standard normal random vari-
ables, the factors become very simple. This is because all the standard deviations of all the
standard normal random variables are equal to 1.

For simpli"cation, the performance function shown in equation (39) is approximated by the
following second-order polynomial of standard normal random variables, in which the mixed
terms are neglected

G-(U)"a
*
#u

!'!
# !

!
#.!

!
#
u
#
# !

!
#.!

&
#
u%
#

(41)

where a
*
, !

#
, and &

#
are 2n#1 regression coe$cients with j ranging from 1 to n.

If the practical performance function G(U) in equation (39) is "tted by G-(U) of equation (41) at
the "tting points in the vicinity of the design point, the regression coe$cients a

*
, !

#
, and &

#
can be

determined from the linear equations of a
*
, !

#
, and &

#
obtained at each "tting point.

For the obtained design point U
'
in standard normal space, "tting points along the co-ordinate

axes are selected. Along each axis u
#
, j"1,2, n, two points having the co-ordinates (U-

'
, u

'#
!2)
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and (U-
'
, u

'#
#2) are selected, where U-

'
"3u

'$
, k"1,2, n except j4 represents the co-ordinates

of the design point along all the axes except the j-axis, and 2 is a factor which represents the
distance from the central point to the "tting point. Transform the "tting points into original space
using Rosenblatt transformation, and "t the original performance function by the performance
function approximation in equation (41) at these points. The regression coe$cients in equation
(41) can now be obtained.

Because the design point is not generally known beforehand, this paper uses the iterative RSA
procedure in the point-"tting SORM+# to approach the performance function in the course of
obtaining the design point. Using the procedure, only m(2n#1) repetitions of nonlinear random
vibration analysis are required for evaluation of time variant reliability with n random variables,
where m is the number of iterations. As shown in the ensuing sections of the present paper, this
procedure is reasonably accurate.

4.3. Computation of failure probability

After obtaining the response surface function shown in equation (41), the "rst-order reliability
index and its corresponding failure probability can be readily obtained. For the case of a strong
non-linear performance function, in order to improve the analytical accuracy, the failure prob-
ability can be obtained using MCS or SORM. In this paper, the failure probability is computed
using the empirical SORM reliability index.+'

Because the response surface function has the same form as the point-"tted performance
function,+# the scale Hessian matrix corresponding to equation (41) is readily obtained as

B" 2
+5G- +

&
!

2 0

6 ! 6
0 2 &

!

(42)

where

+5G- +"(1# !
!
#.!

(!
#
#2&

#
u*
#
) (43)

The sum of the principle curvatures and the average principle curvature radius of the limit state
surface at design point U* can be expressed as:+#

K
4
" 2

+5G- +
!
!
#.!

&
# !1! 1

+5G- +%
(!

#
#2&

#
u*
#
)%" (44)

R"n!1
K

(

(45)

With the aid of K
(

and R expressed in equations (44) and (45), the failure probability
corresponding to the point-"tted performance function (response surface function) can be
obtained by substituting equations (44) and (45) in the following empirical second-order reliabil-
ity index, which is in closed form:

7
(
"!1"! !1(!7

2
) $1# ! (7

2
)

R1(!7
2
)%"0!"!1/%0!'%*(/!*0!'%"211" , K

(
*0 (46)

1198 Y. G. ZHAO, T. ONO AND H. IDOTA

Copyright ! 1999 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 28, 1187}1213 (1999)



7
(
"$1# 2)5K

(
2n!5R#25(23!57

2
)/R%% 7

2
#1

2
K

( $1#K
(

40% , K
(
(0 (47)

where K
(
is the sum of the principle curvatures of the limit state surface given as in equation (44),

R the average principle curvature radius given as in equation (45), n the number of random
variables, 7

2
the "rst-order reliability index and 7

(
the second-order reliability index.

4.4. Inclusion of random variables having no CDF

In the analysis method described above, all random variables are assumed to be continuous
variables having a known CDF. However, the CDF of some of these variables may not be
actually obtainable, and their probability information may be expressed only as cumulate
moments. In order to include these random variables, the High-Order Moment Standardization
Technique (HOMST)+($+) is used.

When the CDF of a random variable cannot be obtained, the histogram is assumed to be
obtainable from statistical data. The failure probability of equation (38) can be expressed in sum
form:

P
2
"!

"

P
&
(x

"
)h(x

"
)8x

"
(48)

where P
&
(x

"
) is the conditional failure probability when the random variable takes the given value

of x"x
"
, and h(x

"
) is the value of the histogram when x is equal to x

"
.

Using HOMST, the random variable can be transformed into a standard normal random
variable by the high-order moment standardization function S,

y"x!'
%

$
%

(49)

u"1
a

["
+(

#3("
,(

!1)y!"
+(

y%] (50)

a"!(5"%
+(

!9"
,(

#9) (1!"
,(

) (51)

where "
$(

is the kth-order dimensionless central moment of y, which is equal to the kth-order
dimensionless central moment of x according to the de"nition of high-order moment, u is the
standard normal random variable.

Because u is a continuous random variable, a continuous random variable x- can be obtained
by the inverse transformation S"! corresponding to u.

x-"S"!(u) (52)

Although x and x- are di!erent random variables, they correspond to the same standard
normal random variable and have the same high-order moments and the same statistical
information source. Therefore, f (x-) can be considered to be an anticipated continuous distribu-
tion of x. Using this continuous distribution, the failure probability shown in equation (48) can
again be expressed as in equation (38), and reliability analysis can be performed using the
EFORM equations described in the previous section. The Jacobinan matrix can be obtained
directly from equations (49), (50) and (51), instead of from the Rosenblatt transformation:

J
""
"*u

"
*x

"

" 1
a$

%

[3($
,(

!1)!2"
+(

y] (53)
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and the inverse function of S is expressed as

x-" $
%

2"
+

[3("
,
!1)!!9("

,
!1)%#4"

+
("

+
!ua)]#'

%
(54)

When both random variables having continuous CDF and those having no CDF are con-
sidered, the random variables can be divided into two groups X"[X

!
, X

%
], where X

!
are the

random variables having CDF, and X
%

those having no CDF. For X
%
, using the anticipated

distribution f
%
(X-

%
) obtained from HOMST described above for X

%
, the total failure probability

can be written as

P
2
"'X

!$X5
%

P
&
(X

!
, X-

%
) f

!
(X

!
) f

!
(X-

%
) dX

!
dX-

%
(55)

Equation (55) can be solved using the EFORM combined with the RSA in standard normal
space described in the previous section. When doing this, the Jacobian matrix of X

!
is obtained by

Rosenblatt transformation, and that of X
%

is obtained using HOMST. In this way, the random
variables without CDF can be included with almost no extra e!ort. Note that the histogram h (x

"
)

and the anticipated distribution f
%
(X-

%
) of X

%
are not needed in the computation; they are used

here only for convenience of description.

5. NUMERICAL EXAMPLE AND INVESTIGATIONS

5.1. Structural model and conditional random vibration analysis

In this section, the response uncertainty and time-variant reliability analysis for a 15F steel
structure having a total height of 52)5 m is performed. The height, weight, initial sti!ness and
strength of each #oor are listed in Table I. The structural model is assumed to be a shearing
hysteretic MDF model, and the force}deformation relationship is assumed to be bilinear. The
damping and sti!ness ratios are assumed to be 0)02 and 0)05, respectively.

The acceleration spectrum recommended by the Architecture Institute of Japan (AIJ),* is used
as the earthquake input and is expressed as

S
+
(¹, h)"# $

1#f
+
!1
d % F

,
G
+
R
+
A

*
0)¹)d¹

'

F
,
G
+
R
+
A

*
d¹

'
)¹)¹

'
2)F

,
G
-
R

-
<
*

¹ ¹
'
)¹

(56)

where f
+
, f

-
, d, G

+
, G

-
, and ¹

6
are parameters of the response spectrum and are assumed to be

2)5, 2)5, 0)5, 1)2, 2)0, and 0)55, respectively, according to the recommendations of the AIJ.,*
As the input of the peak ground acceleration, the maximum value of 818 gal, obtained on

January 17th, 1995 during the Hanshin-Awaji earthquake, is used. The computational results
using deterministic structural parameters are listed in Table II, in which R

#$%
represents the

maximum response of relative storey displacement. Table II shows that all #oors enter the ductile
area when subjected to the previously mentioned input. The maximum ductility ratio occurs at
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Table I. Structural parameters

Floor H (cm) = (t) K (t/cm) Q (t) K
!
/K

*

15 400 397 404 490 0)05
14 400 1278 615 1909 0)05
13 335 1909 1084 3044 0)05
12 310 1400 1429 3739 0)05
11 310 1386 1687 4216 0)05
10 310 1465 1979 4464 0)05
9 310 1624 2200 5271 0)05
8 310 1595 2488 5665 0)05
7 310 1615 2889 6141 0)05
6 310 1961 3347 5669 0)05
5 450 3546 2999 5953 0)05
4 450 4613 2909 7224 0)05
3 500 5802 2803 8735 0)05
2 400 7593 3625 9922 0)05
1 475 6007 4507 10330 0)05

H: Floor height =: Floor weight
K: Initial sti!ness Q: Initial strength
K

!
/K

*
: Sti!ness ratio

Table II. Stochastic response using deterministic parameters

Floor $
"

' of R
#$%

Duct. ratio $ of R
#$%

P
&

7

15F 0)877 2)30 1)90 0)46 0)0 #
14F 2)293 6)16 1)98 1)21 0)0 #
13F 2)892 7)62 2)71 1)57 0)0 #
12F 2)880 7)47 2)85 1)59 0)0 #
11F 2)988 7)52 3)01 1)68 1)2#10"' 5)60
10F 3)100 7)68 3)40 1)77 1)0#10"# 4)27
9F 2)944 7)25 3)03 1)71 2)9#10"' 5)00
8F 2)894 7)09 3)11 1)69 9)5#10"' 4)76
7F 2)655 6)52 3)07 1)50 6)5#10"' 4)84
6F 2)917 7)16 4)23 1)72 2)0#10"+ 2)88
5F 3)947 9)60 4)84 2)34 1)7#10"% 2)12
4F 4)276 10)26 4)13 2)55 1)5#10"+ 2)97
3F 4)662 11)22 3)60 2)77 8)0#10"# 3)77
2F 4)168 10)16 3)71 2)44 1)3#10", 3)65
1F 3)599 8)97 3)91 2)05 3)2#10", 3)41

the "fth #oor, and the corresponding mean value of maximum response is found to be 9)60 with
a standard deviation of 2)34.

Assuming the excursion level is taken to be 7 based on the deformation capacity of buildings in
seismic design recommended by the AIJ,,! the computational results of failure probability with
given parameters are listed in Table II. The conditional failure probability corresponding to the
"fth #oor is found to be 0)017.

RESPONSE UNCERTAINTY AND TIME-VARIANT ANALYSIS OF MDF STRUCTURES 1201

Copyright ! 1999 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 28, 1187}1213 (1999)



5.2. Parameter uncertainties

Seven parameters, four structural parameters and three excitation characteristics, have been
considered. The uncertainty of structural parameters, the initial sti!ness K

*
, initial strength Q

*
,

#oor weight = and damping ratio # in each #oor are assumed to be totally correlated. Each
parameter is multiplied by a random variable having a unit mean value

K-
*
"x

*
K

*
(57a)

Q-
*
"x

.
Q

*
(57b)

=-"x
/
= (57c)

#-"x$# (57d)

D-"x
0
D (57e)

S-
+
"x

1
S
+

(57f )

where x
*
, x

.
, x

/
, x$ , x0

and x
1

are random variables having a mean value of 1. K
*
, Q

*
, =, #,

D and S
+

are the deterministic values of initial sti!ness, yield strength, #oor weight, damping
ratio, duration and response spectra, respectively, and K-

*
, Q-

*
, =-, #-, D- and S-

+
are the

corresponding variables that include uncertainties.
According to References 4, 28, 38 and 41, x

*
, x

.
, x

/
, x$ , x0 are assumed to be lognormal

random variables with coe$cients of variation of 0)1, 0)2, 0)1, 0)4 and 0)3 respectively. The "rst
four moments of the standard response spectrum are taken to be '"1)0. $"0)26, "

+
"0)798,

"
,
"7)152 according to Reference 28.
The distribution of the peak ground acceleration a

)
is obtained directly from th excursion

probability curve of the annual peak ground acceleration under the assumption that the
earthquake occurs in accordance with the Poisson's Law:

f
+
(a)"$ "

a
*
%$ a

a
*
%"0%'!1

(58)

where a
*

is the minimum value of a
)
, which is taken to be 20 gal, and " is taken to be 2)34.

5.3. Response uncertainty evaluation

In order to investigate the evaluation procedure for response uncertainty, the uncertainties of
only four parameters, i.e. x

*
, x

.
, x

/
and x$ are considered. All four random variables have known

CDF, so the results can be con"rmed using the Monte-Carlo Simulation (MCS). Evaluations are
conducted using the approximation functions given in equations (27) and (28). The standard
deviations of the maximum response obtained using point estimates are listed in Table III along
with those obtained using MCS with a sample size of 10 000. Table III shows that although only
2n#1"9 repetitions of nonlinear random vibration analysis are required in equations (27) and
(28), both of these approximation functions yield good results. The largest error for equation (27)
is 1)815 per cent and that for equation (28) is 2)383 per cent. That is to say, the results obtained
using point estimates using either equation (27) or equation (28) can be used as an accurate
approximation of the actual values. Since the errors obtained using equation (27) are generally
smaller than those obtained using equation (28), the present paper will use equation (27) for the
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Table III. Comparison of MCS and PEM with four parameter uncertainties (p of
maximum response)

Floor MCS Point estimates
Equation (27) Error (%) Equation (28) Error (%)

1 2)3523 2)3096 1)815 2)2962 2)383
2 2)7234 2)6936 1)094 2)6839 1)451
3 3)0926 3)0475 1)458 3)0319 1)964
4 2)8554 2)8083 1)649 2)7977 2)020
5 2)6448 2)6237 0)798 2)6154 1)113
6 1)8958 1)8829 0)680 1)8842 0)610
7 1)6597 1)6535 0)373 1)6561 0)215
8 1)7935 1)7935 0)000 1)7966 0)173
9 1)8132 1)8235 0)568 1)8258 0)695

10 1)9009 1)9171 0)852 1)9194 0)972
11 1)7939 1)8113 0)970 1)8150 1)174
12 1)7015 1)7193 1)046 1)7229 1)258
13 1)6691 1)6732 0)241 1)6689 0)013
14 1)3607 1)3712 0)772 1)3765 1)162
15 0)5303 0)5378 1)414 0)5390 1)646

evaluation of the uncertainties of the maximum response in which all the parameter uncertainties
are considered.

In order to investigate the e!ect of the parameter uncertainties, the mean value of the
maximum response using deterministic parameters, two parameter uncertainties (x

*
and x

.
only),

four parameter uncertainties (x
*
, x

.
, x

/
and x$ only) and six parameter uncertainties

(x
*
, x

/
, x$ , x0

and x
1
) are depicted in Figure 3, in which the inclusion of parameter uncertainties

is revealed to make the mean values of the maximum response larger for some #oors and smaller
for others. Generally, the inclusion of the parameter uncertainties have little e!ect on the mean
value of the maximum response.

The standard deviation of the maximum response corresponding to Figure 3 are depicted in
Figure 4, in which the deviations including parameter uncertainties are very di!erent from those
using deterministic parameters. From the comparison between Figures 3 and 4, one can see that
the parameter uncertainties have a much greater e!ect on the standard deviation than on the
mean value of the maximum response. Figure 4 reveals that the greater the number of parameter
uncertainties included, the larger the standard deviation of the maximum response. Since the
standard deviation using six parameter uncertainties is much larger than that using deterministic
parameters, two parameter uncertainties and four parameter uncertainties, the e!ect of the
uncertainties included in the excitation properties is found to be dominant on the uncertainties of
the maximum response.

5.4. ¹ime-variant reliability analysis

In order to investigate the e$ciency of the procedure proposed for time-variant reliability
analysis, uncertainties of only two parameters, i.e. x

*
and x

.
, are "rst considered. The "tting

points in standard normal space are controlled by 2"0)5.
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Figure 3. Mean values of maximum response including parameter uncertainties

For the "fth #oor, convergence is reached easily after "ve iterations. The "rst-order reliability
index is obtained as 7

2
"1)118, with corresponding failure probability of P

2
"0)1319. Using the

SORM approximation described in Section 4)3, the sum of the principle curvatures of the limit
state surface is readily obtained as K

(
"0)0689, with a corresponding average principle curvature

radius of R"29)042. It can be seen from this that the non-linearity of the performance function is
very weak. With the aid of K

(
and R, the second-order reliability index is obtained as 7

(
"1)151,

with corresponding failure probability of P
(
"0)1249. For the purpose of comparison, MCS with

50 000 trials is also conducted and the failure probability is obtained as 0)1236. One can see that
the SORM result obtained in this paper agrees with the MCS result quite well.

In order to investigate the procedure of the RSA, the response surface obtained after the "rst,
third and "fth iterations are depicted in Figures 5}7, in which the black point is the design point
of the limit state surface and the dashed lines describe the coordinates of the design point. In these
"gures, the surface with rough mesh is the response surface described by equation (41) and that
with "ne mesh is the true limit state surface described by equation (39). From Figures 5}7, one can
see that although the response surface obtained after the "rst iteration does not approximate the
true limit surface in the vicinity of the design point, as the number of iterations increases, the
approximation gradually becomes better. The response surfaces obtained after the "fth iteration
agrees with the limit state surface quite well in the vicinity of the design point.
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Figure 4. COV of maximum response including parameter uncertainties

For the 1st to 6th #oors, convergence can be reached easily in 3}6 iterations. For the 12th to
15th #oors, convergence cannot be reached, because the EFORM is based on the computation of
P
&
(X) and the algorithm of FORM, in which, when P

&
(X) becomes 0, the inverse function of the

normal distribution becomes in"nite. Because conditional failure probabilities for the 7th to 11th
#oors are too small (approximately 10"' as listed in Table II), and the accurate inverse function of
the normal distribution becomes di$cult to obtain, the computation procedure becomes unsta-
ble. Because of this, the results are obtained by adjusting 2 to a value of 0)5}0)7. The
FORM/SORM results for each #oor are listed in Table IV, along with those obtained by using
MCS with 50 000 trials for the sake of comparison. From Table IV, the failure probabilities when
parameter uncertainties are included can clearly be seen to be much larger than those when only
deterministic parameters are used. There is good agreement between the results obtained using
the proposed procedure and those obtained using MCS. One can also see that the di!erence
between the reliability index with given parameters and that with parameter uncertainties
increases as the reliability index increases.

To investigate the e$ciency of including the random variables that have no CDF, analysis is
also conducted using the high-order moments. The high-order moments corresponding to the
initial sti!ness x

*
are obtained as "

+
"0)301, "

,
"3)1615, and those corresponding to the initial

strength x
.

as "
+
"0)608, "

,
"3)6644. The reliability results obtained using high-order moments

instead of CDF are listed in Table V. From Table V, one can see that the computational results
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Figure 5. Response surface obtained after "rst iteration

Figure 6. Response surface obtained after third iteration
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Figure 7. Response surface obtained after "fth iteration

Table IV. Results with two parameter uncertainties using known CDF

Floor Present method MCS
no.

FORM SORM 2 No. of (50 000)
iter. 7 P

27
2

P
2

7
(

P
2

15 # # # # # # # 0
14 # # # # # # # 0
13 # # # # # # 3)66 1)3#10",
12 # # # # # # 3)28 5)3#10",
11 2)797 2)58#10"+ 2)876 2)02#10"% 0)7 4 2)93 1)7#10"+
10 2)292 1)09#10"% 2)453 7)08#10"+ 0)7 8 2)40 8)3#10"+
9 2)729 3)18#10"+ 2)898 1)88#10"+ 0)6 3 2)83 2)4#10"+
8 2)606 4)58#10"+ 2)649 4)03#10"+ 0)7 5 2)71 3)4#10"+
7 2)676 3)73#10"+ 2)792 2)62#10"% 0)7 3 2)77 2)8#10"+
6 1)569 5)83#10"% 1)651 4)94#10"% 0)5 3 1)63 5)2#10"%
5 1)118 0)1319 1)151 0)1249 0)5 5 1)16 0)1236
4 1)561 4)93#10"% 1)574 5)77#10"% 0)5 6 1)62 5)2#10"%
3 2)005 2)25#10"% 2)024 2)15#10"% 0)5 3 2)07 1)9#10"%
2 1)968 2)45#10"% 1)965 2)47#10"% 0)5 6 2)00 2)3#10"%
1 1)744 4)06#10"% 1)791 3)66#10"% 0)5 4 1)82 3)4#10"%
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Table V. Results with two parameter uncertainties using high-order moments

Floor FORM SORM 2 No. of
no. iter.

7
2

P
2

7
(

P
2

15 # # # # # #
14 # # # # # #
13 # # # # # #
12 # # # # # #
11 2)724 3)23#10"+ 2)800 2)56#10"% 0)7 6
10 2)284 1)12#10"% 2)340 9)64#10"+ 0)7 7
9 2)638 4)17#10"+ 2)620 4)39#10"+ 0)8 3
8 2)554 5)32#10"+ 2)621 4)39#10"+ 0)6 12
7 2)634 4)23#10"+ 2)792 2)62#10"% 0)6 4
6 1)575 5)76#10"% 1)616 5)31#10"% 0)5 3
5 1)120 0)1313 1)167 0)1217 0)5 6
4 1)571 5)81#10"% 1)554 6)02#10"% 0)5 6
3 2)029 2)12#10"% 1)987 2)35#10"% 0)5 6
2 1)959 2)50#10"% 1)990 2)33#10"% 0)5 4
1 1)761 3)91#10"% 1)781 3)74#10"% 0)7 3

obtained using high-order moments agree approximately with those obtained using CDF. In
other words, the procedure of including the random variables that have no CDF is e!ective.

In the case of inclusion of all of the seven parameter uncertainties considered in the present
paper, i.e. x

*
, x

.
, x

/
, x$ , x0

, x
1
and a

)
, the "tting points in standard normal space are controlled

by 2"0)6, for all the random variables except a
)
, for which a value of 2"0)08 is used. For the

5th #oor, convergence is reached after only three iterations and the response surface function is
obtained as

G-"24)086#u
!'!

!0)228u
!
#1)556u

%
!0)358u

+
!0)0229u

,
!2)055#10",u

#
!1)707u

&
!1)400u

'
!0)0519u%

!
#0)202u%

%
(59)

!0)0104u%
+
!0)0805u%

,
!0)0141u%

#
#0)202u%

&
!1)327u%

'
where u

!
, u

%
, u

+
, u

,
, u

#
, u

&
and u

'
are standard normal random variables corresponding to K

*
,

Q
*
, =, /, S

+
, D and a

)
, respectively.

Using equation (59), the "rst-order reliability index is obtained as 7
2
"3)679, with correspond-

ing failure probability of P
2
"1)17#10",. The average principle curvature and curvature radius

corresponding to equation (59) are readily obtained as K
4
"3)276#10"% and R"213)685. The

second-order reliability index is obtained as 7
4
"3)695, with corresponding failure probability of

P
2
"1)10#10",. The SORM results only improved those of FORM slightly because the

non-linearity in equation (59) is not strong.
For the 1st to 10th #oors, the convergency is reached quickly after 3}5 iterations; for the 11th to

15th #oors, convergence is not reached because the conditional failure probabilities P
&
(X) are too

small. The design points and FORM/SORM results obtained from the reliability evaluation
procedure are listed in Table VI, where the design points have been transformed to original apace
for convenience of comparison. From Table VI, the values at the design point corresponding to
the random variables that have relatively larger uncertainty, i.e. the yield strength x

.
, the
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Figure 8. Relationship between #oor number and reliability index

damping ratio #, the peak acceleration a
)
, the duration D and the response spectra S

+
, are seen to

be very much di!erent than their initial values. The values at the design point corresponding to
the random variables that have relatively little uncertainty, i.e. the initial sti!ness x

*
, the #oor

weight x
/

are, on the other hand, not changed much from their initial values. The in#uence of the
random variables that have relatively larger uncertainty are more dominant than those of the
random variables that have relatively little uncertainty. The values corresponding to the peak
acceleration a

)
, at the design point are seen to be most di!erent from the initial values, meaning

a
)
has the most dominant e!ect on the results of reliability evaluation.
The "rst-order reliability indices that include all of the seven parameter uncertainties are

depicted in Figure 8. It can be seen from this "gure that the di!erences in reliabiity indices
between di!erent #oors are much smaller than in the case when parameters are given. Therefore,
the maximum response does not have dominant e!ect in the case of time-variant reliability
analysis as in the case of given parameters. A similar conclusion was obtained for the limit state
condition.,%

For the purpose of comparison, the "rst-order reliability indices that include two parameter
uncertainties (only x

*
and x

.
), those that include four parameter uncertainties (x

*
, x

.
, x

/
and x$)

and those that include six parameter uncertainties (x
*
, x

.
, x

/
,x$ , x0

and x
1
) under the same level

of earthquake input (818 gal) are also depicted in Figure 8. The "gure shows that the greater the
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number of parameter uncertainties included, the smaller the "rst-order reliability index. In other
words, disregarding parameter uncertainties will result in a very high evaluation of the safety of
structures. The reliability index with the uncertainties of all the seven parameters are much larger
than those with uncertainties of two, four, six parameters, because the latter take very large peak
ground acceleration (818 gal) as input.

6. CONCLUSIONS

The response uncertainty evaluation in the present study reveals the following:

(1) An evaluation procedure for the uncertainty of the non-linear stochastic response was
developed, in which the mean value and standard deviation of the maximum response that
takes into account parameter uncertainties can be evaluated through only a few repetitions
of non-linear random vibration analysis using deterministic parameters, without the need
for sensitivity analysis of the maximum response.

(2) The response uncertainties evaluated using point estimates are in good agreement with
those obtained using MCS. Both the approximation functions for point estimate can be
used to evaluate the stochastic response uncertainty with consideration of parameter
uncertainties.

(3) The mean values of the maximum response obtained using parameter uncertainties remain
almost unchanged as those obtained using deterministic parameters. For the standard
deviation of the maximum response, the deviations obtained using parameter uncertainties
are very di!erent from those obtained using deterministic parameters.

(4) The e!ects of the uncertainties contained in the excitation characteristics are greater than
those contained in the structural properties.

(5) The greater the number of parameter uncertainties included, the larger the standard
deviation of the maximum response. Disregarding parameter uncertainties will evaluate
the uncertainties of the maximum response to be very low.

(6) Mean value and standard deviation obtained using point estimates are in very good
agreement with the exact values for functions of random variables with small deviation, but
for third- and fourth-order moments, the results obtained using point estimates cannot
used as an approximation of the actual values. This precaution is necessary when using
point estimates.

The time-variant reliability analysis in the present study reveals for the following:

(1) A time-variant reliability analysis procedure for hysteretic MDF structures was developed,
in which the failure probability takes into account parameter uncertainties, including
random variables that have no CDF. The procedure can be carried out through a several
repetitions of earthquake reliability analysis with given parameters, and without any
sensitivity analysis.

(2) Because the response surface function is expressed directly as a second-order polynomial of
standard normal random variables, the computational accuracy can be improved easily by
using SORM, The complicated computation of the Hessian matrix is not required, nor is it
necessary to carry out the rotational transformation or eigenvalue analysis of the Hessian
matrix.
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(3) The failure probability that takes parameter uncertainties into account is much larger than
that with deterministic parameters (mean values of random variables). Good agreement
was observed between the results obtained using the developed procedure and those
obtained using MCS.

(4) The di!erence between the reliability index with given parameters and that with parameter
uncertainties increases as the reliability index increases.

(5) The maximum response has more signi"cant e!ect on the failure probability when using
given parameters than when parameter uncertainties are taken into account.

(6) The in#uence in the time-variant reliability analysis of the random variables that have
relatively larger uncertainty is more dominant than that of random variables that have
relatively little uncertainty. The peak ground acceleration has the most dominant e!ect on
the results of reliability evaluation.

(7) The greater the number of parameter uncertainties included, the smaller the "rst-order
reliability index. Disregarding parameter uncertainties will result in very high evaluation of
the safety of structures.

(8) The developed procedure in the present paper is generally practical for time-variant
reliability analysis of hysteretic MDF structures in which random variables that have no
CDF are included. However, like EFORM, the procedure is di$cult to apply to problems
in which the conditional failure probability P

&
(X) is too small.
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