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Abstract: The computational assessment of system reliability of structures has remained a challenge in the field of reliability engineer-
ing. Calculation of the failure probability for a system is generally difficult even if the potential failure modes are known or can be
identified, because available analytical methods require determination of the sensitivity of performance functions, information on mutual
correlations among potential failure modes, and determination of design points. In the present paper, a method based on mome!
approximations is proposed for structural system reliability assessment that is applicable to both series and nonseries systems. The po
estimate method is applied to evaluate the first few moments of the system performance function of a structure from which the moment
based reliability index and failure probability can be evaluated without Monte Carlo simulations. The procedure does not require the
computation of derivatives, nor determination of the design point and computation of mutual correlations among failure modes; thus, it
should be computationally effective for structural assessment of system reliability.

DOI: 10.1061(ASCE)0733-944%52003129:1G1341)

CE Database subject headings:  Structural reliability; Failure modes; Moments; Assessment.

Introduction Pe=Projg,<0Ug,<0U,...,Ug,<0] 1)

The evaluation of system reliability for structures has been an Conversely, the safety of a system is the event in which none of
active area of research for over three decades. The calculation ofhe m potential failure modes occurs; again in the case of a series
the failure probability for a system is generally difficult even if System, this means

the potential failure modes are known or can be identified, be- _

causpe of the large number of potential failure modes for most Ps=Prolig1=0Mgz=00N,....1gn>0]
practical structures, the difficulty in obtaining the sensitivity of =Profmin(g;,95,...,.9m) >0] 2)
the performance function, and the mutual correlations among fail-

ure modes. The search for efficient computational procedures for Thus the performance function of a series syst@ncan be ex-
estimating system reliability has resulted in several approachesPressed as the minimum of the performance functions that corre-
such as bounding techniques, the probabilistic network evaluationsponds to all the potential failure modes, that is,
technique(PNET), and direct or smart Monte Carlo simulations. o

In theqpresent paper, a computationally more effective method G(X)=mings, gz, O] (3)
using moment approximations for system reliability is proposed where g;=g;(X) is the performance function of thi¢h failure

and examined for both series and nonseries systems. mode.

In the case of a series system, the performance functions of the
individual failure modes will be smooth; for a nonseries system,
however, each of the failure modes will generally involve combi-
nations of the maximum and minimum of the component perfor-
mance functions, as illustrated later in example 4. Consequently,
the resulting system performance functidd(X), will not be
smooth and will be more complex than that of a comparable
series system.

Since it is difficult to obtain the sensitivity of the performance
function even for a series system like E@), derivative-based
FORM would not be applicable. The failure probability of a sys-
tem can be determined using bounding technidses, e.g., Cor-

IAssociate Professor, Dept. of Architecture, Nagoya Institute of nell 1966 as a function of the failure probability of individual
Technology, Gokiso-cho, Shyowa-ku, Nagoya 466-8555, Japan. modes; however, for a complex system the bounds would be wide

Research Professor, Dept. of Civil and Environmental Engineering, even though these bounds can be improved by second-order
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Assessment of System Reliability

A structural system will invariably have multiple modes of poten-
tial failure, e.g.,E;, E,,..., E,. The occurrence of one or more
of these failure modes will constitute failure of the system, i.e.,
system failure is the union of all the modesUE,U,... UE,,.

For a structural system, each of the failure modgs, can be
defined by a performance functian=g;(X) such thatg;=(g;
<0) and the failure probability of the system is then
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Moses (1982, Thoft-Christensen and Murotq41986), and Ben-
nett and Ang(1986.
In the present paper, moment approximati¢isao and Ono

JOURNAL OF STRUCTURAL ENGINEERING © ASCE / OCTOBER 2003 / 1341



200)) for evaluation of system reliability are investigated. If the wherex; andw; are the abscissas and weights for Hermite inte-
central moments of the system performance function, described ingration with weight function expfx®) that can be found in work
Eq. (3) for a series system, can be obtained, the failure probability by Abramowitz and Stegurti972.

of a system, which is defined as PfF@{X)<0] can be expressed For a five point estimate in standard normal spétfeao and

as a function of the central moments. The proposed method,Ono 20008

therefore, is based on the premise that by finding the relationship

between the failure probability and the central moments©X), Up=0 Po=8/15 (&)
the probability of system failure can be assessed. Because the first U, =—u; =1.3556262 P,=0.2220759 (B)
two moments are generally inadequate, high-order moments will

invariably be necessary. Uy, =—U, =2.8569700 P,=1.12574<10"2  (60C)

Approximating the distribution of a random variable using its ) . )
moments of finite order is a well known problem in statistics, and Whereas for a seven point estimate in standard normal space,

various approximations such as the Pearson, Johnson, and Burr Up=0 Py=16/35 (A)
systems and the Edgeworth and Cornish—Fisher expansions were

developed(Stuart and Ord 1987 Their application in structural U, =—u;_=1.1544054 P,=0.2401233 (B)
reliability has been examined by Winterstditf88 and by Par-

kinson (1978. A first-order third-moment reliability method Ups=—Up-=2.3667594 P,=3.075710°%  (7c)

(Tichy 1999 was developed, the results of which, however, de-
pend on a successful search for the design point. A method of
moments that is independent of the design point was developedFor a function of many variablesZ=G(X), where X
by Grigoriu and Lind(1980 that requires optimal estimation of  =x;,x,,...X,, the joint probability density is assumed to be
convolution integrals using higher-order moments of the perfor- concentrated at points in ta" hyperquadrants of the space de-
mance function and a linear combination of distributions from fined by then random variables, in whicim is the number of
prescribed reference sets. Grigofil83 also developed a pro-  estimating points used in the point estimates for functions of re-
cedure to estimate the failure probability using a method of mo- spective single random variables. Then the momentsZof
ments, in which moments were obtained from Monte Carlo simu- =G(X) can be point estimated as
lations. Hong (1996 proposed a point-estimate moment-based N
reliability analysis method, in which the concentrations in the _
point estimates require the solution of nonlinear equations. “G:Z ,1:[1 PeiGLT H(Ucr Uep, -+ Uen) ] (82)

In the present paper, the moments of the system performance
function, G(X), are obtained using point estimates in standard n
normal space in which the concentrations can be readily obtained oi=> H Pl G(T H(Ucq,Uez,- - Uen)) — gl (8b)
without solving nonlinear equations. After the moments of the =1
performance functios(X) are obtained, the moment-based reli- n
ability index can then be evaluated using an available standard- arGUEZE H Pl G(T Uy, Uczs - Uer)) — pa]” (80)
ization function or appropriate distribution systems. i=1

Uss = —Uz_=3.7504397 P,=5.4826%10 4 (7d)

wherec =distinct combination of terms from a groupl,2,...m]
Determining Moments of Performance Function andci=ith term ofc. u,;=cith estimating point an®_;=weight

corresponding tou.;. n=number of random variables and
In the present paper, the point-estimate metfigitao and ONo0  m=number of estimating points, whepe; , o, anda,¢ are the
20003 is used to determine the moments of the system perfor- mean value, standard deviation, and tte dimensionless central

mance function like in Eq(3) for a series system. For a function  moment ofG(X), andT~* is the inverse Rosenblatt transforma-
of only one random variablg=y(x), the moments of can be tion.

point estimated as Since all distinct combinations have to be considened,
m times of function calls for computing(X) are required. The
P~y=2 PYIT Hu)] (4a) computations involved in Eq98), therefore, can be massive
k=1 whenn is large. In order to avoid this problem, the functiGiiX)
m may be approximated by*(X) as follows (Zhao and Ono
o5= 2 PdYIT Huol=py)? (40) 20002
- n
m G*(X)=2, (G—G,)+G, (9a)
aryoy= 2 PdYLT (] =yl (4c) =
- where

Whereuy, oy, andary= mean value, standard deviation, artd
dimensionless central moment pfx), T~ !=inverse Rosenblatt GL=G(m) (9b)
transformation. u;, U,,...,u,=estimating points andP,,

- -1
P,,...,P,=corresponding weights. Gi=GIT (U] (%)
The estimating points;; and their corresponding weighg where p represents the vector in which all the random
can be readily obtained gZhao and Ono 2000a variables take their mean values, and U;
w =[Up1 Uy, Uyio1, Ui ,umﬂ,..._,uu_n]T, whereu,,, k=1,...n
ui=v2x; P, ' (5) except, is thekth valye ofu, , which is the vector ini space that
Jm corresponds tg. G, is a constant an@; is a function of onlyu;
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for specificG* (X). T~ ! is the inverse Rosenblatt transformation.
For independent random variablés G; can simply be expressed
as

Gi:G(Ml-Mz----aMiflxxi:P«i+11---:}"~n) (gd)

The approximation of Eq9a) can be viewed as a generalization
of the following observation: If5(X) is of the form

n n
G(X)= 2, aix; or G(X)=2, yi(X) (%)
where a;= constant; andy;=arbitrary function ofx;, Eq. (9a)
will become exact, i.eG* (X)=G(X).

Observe thatu; andi=1,...n are independent an@®; is a
function only ofu; ; thereforeG; , i=1,...n are also independent.
Hence, the first four moments &* (X) in Eq. (9a) can be ex-
pressed as

pe=2, (k=G +G, (10a)
“
n
oé=i§1 o? (10b)
n
Q30 g= 10L3i0'i3 (10c)
“
n n-1 n
a4Gaé:i§1 a4i0'i4+6i21 12>| 0i20']-2 (10d)

wherep; ando;=mean value and standard deviation@&f, re-
spectively.as and o, are the third and fourth dimensionless
central moments, i.e., the skewness and kurtosiS;of

Since G; is a function of only one standard normal random
variableu; , the first four momentsy;, o;, a3, anda,, can be
point estimated from Eq$4). For a performance functio@(X)
with n variables, if the probability moments @&; are estimated
using anm-point estimate, onlymn function calls of G(X) are
required to estimate the first three or four momentsGgiX).
After the first three or four moments @(X) are obtained, the
reliability analysis becomes a problem of approximating the dis-
tribution of a specific random variable with its known first three
or four moments.

Moment-Method Formulas

Third-Moment Reliability Index

The third-moment reliability index can be obtained from some

_ sign(azg) ( _ ﬁ)
VIn(A) VAL Up

where p.g and ocg=mean and standard deviations Dfrespec-
tively; andu,= standardized bound of the distribution.

In (12)

1
A=1+ (13)

b
The relationship between the boung and the skewnessg is
given by

1)1
age=—|3+ —|— (14)
Uy Uy
The solution of Eq(14) yields
1
up=(a+b)3+(a—b)3- P (15a)
3G
in which
1 1 1 1
=——|—+3 =— 5 Jalo+
Since
Proj z=0]=Projz,<—B,yu] (16)

the third-moment reliability index (8 reliability indeX is (Zhao
and Ono 2001

_ —sign(asg) ( Bﬂ
M A In| VA| 1+ ™ (17)

where B,y =second-moment reliability index (2 reliability
index).

Simplification of the 3M Reliability Index

According to Eq.(12), the absolute value of the random variable
(z,—up,) obeys the log—normal distribution with parametars
and ¢, and the coefficient of skewnessg is given by
ase=[exp({?) +2]Vexp () -1 (18)
Comparing Eq(18) with Eq. (14), one can easily see that
Up= —sign(aze)[exp({?) — 1]~ 2 (19)

When the absolute value @fy; is less than 1, the absolute
value of { is less than 0.314, and the following approximation
applies within error of less than 2.5%:

three-parameter distributions, such as the three-parameter log-Substituting Eq(20) into Eq.(18), one obtains

normal distribution(Tichy 1994 and the third-moment transfor-
mation (Zhao and Ono 2000bThese distributions give similar

vexp{?)—1=¢ (20)
a3e=3(+(3 (21)

results when the absolute skewness of the performance functionis For small¢ (e.g., {<0.314), Eq.(21) yields the following
small(e.g.,a3<1). In the present paper, the three-parameter log— approximations fo anduy,:

normal distribution is used. For the performance function
=G(X) described in Eq(3), if the first three moments are ob-
tained, and assuming that the standardized variable

Z— PG
Z. =

= (11)
obeys the three-parameter lognormal distributi@ichy 1994,
the standard normal random variablés expressed as the follow-
ing function:

Up=-—— (=1/303c (22)

a3G
Then, the standard normal random variablean be expressed
as follows:

1
1+ §OL3GZU

and the 3 reliability index becomes

A3G
u=——+—In
6 A3G

(23)
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and Burr systems$Stuart and Ord 1987; Hong 1996nd Ram-
berg’s lamda distributioGrigoriu 1983. Since the quality of
approximating the tail area of a distribution is relatively insensi-
tive to the distribution family selecte@Pearson et al. 197%nd

- oxact the solution of nonlinear equations is necessary to determine the
0 Toeem approximation parameters of the Johnson and Burr systems or the lamda distri-
5 /—-"" bution, the Pearson system is selected for use in the present study.

i 4

For the standardized variab#g of Eq. (11), the probability den-
sity function(PDP of z, andf, satisfies the following differential
equation in the Pearson systéB8tuart and Ord 1987

-10

™~

[ L) ARV FAWEE SRR TS AW |[| [ENNE NN FNEE

2 15 -1 05 0 05 1 15 2 1 df az,+b -
o _
36 f dz, c+bz,+dZ (25)
Fig. 1. Variations of standardized bound where
a=100,6— 1203,—18
3G
Bau=——%— ——In1- Za3cBam (242) b=oa3zc(aset+3)
6 a3G 3
— _ C:40L4_G_30L2
Observe that ag approaches 0, In(@x)=x, and Eq.(24a) be 3G
comes d=2a,c—3a3;—6
Bam=Pom—1/6asg (240) Using the relationship described in E@L6), the fourth-
This implies that3;y, approacheg,y for extremely smalkv g . moment reliability index (M reliability index is given by
For negativen s, EQ. (24a) is valid for any values of3,), - B
However, for positiveass, EQ. (24a) is valid only if Baoy B4M=—¢1[f f(z,)dz, (26)
<3/a3G . -

To examine the accuracy of the approximation expressed in  The PDF ofz,, depending on the values of parametarb, c,
Eq. (22), the values of the standardized boungare depicted in  anqd (zZhao and Ono 2001is as follows:
Fig. 1, where the thin solid lines indicate the exact values pf

obtained from Eq(15) and the thick dash lines indicate those f(zy) =K(z,—r1p) " VB@rt0) (1, — 7 )R (@r+b)
obtained with Eq(22). From Fig. 1, one can see that although Eg.

(22) is much simpler than Eq15), the u, results obtained with for A>0, d<0 (272)
Eqg. (22) agree well with those obtained from E@.5). - az,

The accuracy of the approximaté/Breliability index in Eqgs. f(z,)=K(c+bz,)@cb/b exp{ — | for A>0, d=0
(24) is also demonstrated in Fig. 2, where the thin solid lines (27h)
indicate the exact reliability indices obtained with E@7) and _ _
the dashed lines indicate those obtained with E2#. From Fig. f(z,)=K|z,—r|VA@r1FD)|z —p, | ~INA(@rz+b)

2, one can see that the reliability indices obtained with E24).
also agree well with those obtained from Ef7). One can also for A>0, d>0 (27c)
see that the @ reliability index (shown as dash-dotted lines in arg+b
Fig. 2) contains significant error. f(z,)=K|zy—ro| ex;{m for A=0 (27d)
u— o
B iabili ab—2bd b-+2d
Fourth-Moment Reliability Index f(zy) =K(C+bz,+dz2) ¥ exp{ tan 1 Zu)
The fourth-moment reliability index can be obtained utilizing ex- dy-A NETY
isting systems of frequency curves, such as the Pearson, Johnson, for A<0 27%)
¢ whereK is determined fronfF(+«)=1, and
g II||II|I.IIIIIIV||II'|'IIII|IIII |I|§ A_bz 4d __b_\/X __b+\/K __b
o / A —ormacd =Ty et g ot
z, ' (27f)
=
S One can note that whes;g=0 anda,g=3, z, becomes a

w

SRR AR RN R R

standard normal variable; in this cagew =PBov -

—e=-=2M
3M-exact
======= 3M-approximation

Il PR NS N T A

Numerical Examples

IR ENTE ENEEY AT NN FUE T N N

1

0 05 1 1.5 2 25 3 35

*
aiG ‘BSM

Fig. 2. Variations of M reliability index

4

A number of examples are illustrated below to demonstrate the
accuracy and computational effectiveness of the moment-based
method. These include problems that involve normal as well as
non-normal probability distributions. If one or more of the ran-

dom variables are non-normal, appropriate Rosenblatt transforma-
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s S t 52 G,=min{575,M,+175M,+ 375
M2 M3 63:m|n{2M3+ 175, M3+375}
G,=800-4.55

SinceG;, is a function of single random variabM ,, its mo-
ments can be point estimated using E¢Y. For a five-point

M M3

4.5m
=
15

777 6m 777 777. 20' 7777 estimate, using the inverse Rosenblatt transformation expressed
" " " B as
(@) (b) T Y (u)=F {®(uj] (29)
Fig. 3. One-story one-bay frames of examples 1 and 2 where F=cumulative distribution function of M,;; and

& = standard normal probability, the five estimating points of Egs.
(6) can be easily transformed into original spaceTas(u,_)
=129.157, T }(u,_)=161.576, T }(ug) =197.787, T Y(u,.)
tions are necessafng and Tang 198yto evaluate the moments ~ =242.113, andl ~*(u,. ) =302.886. Substituting these into Egs.
as indicated in Eqg4) and (8). Most of the examples are series (4) using the corresponding weights listed in E¢8), the first
systems with elastoplastic components, however, two nonseriesfour moments ofG, are approximately

systems are illustrated in gxample 4 and they.involve brittle com- 1L1=564.489mM, 0,=44.164m, az= —0.479, az=2.943,
ponents. One of the case in example 2 also illustrates the limita-
tion of the first four moments for problems that involve extremely Similarly the first four moments o6,, Gz, G, are

small failure probability. 1,=553.979m, 0,=233.25am, «s=—1.463, a,=3.785,

k3= 564489m, 03= 44.164m,0L33: - 0479, Qy3= 2943,
Example 1
In the first example we consider a one-story one-bay elastoplastic ™4~ 575.008m, ¢4=90.00am, cg,=—1.264, 44=5.968
frame, shown in Fig. @). This series system is used to illustrate Then using Eqs(10), the first four moments o&* are approxi-
numerical details of the procedure for the proposed moment mately pug=532.958, 0=114.485, azc=—0.704, andoyg
method. The four potential failure modes of the system can be =4.098.
readily identified and defined by four linear performance func-  Finally, with the first two moments of the performance func-
tions. The FORM reliability indices for the respective failure tion G*, the 2V reliability index is 8,y =4.655. With the first
modes are given in parentheses below to indicate the relativethree moments of the performance function, E@sl give the
dominance of the four different modes. 3M reliability index asB;y=3.264 with corresponding failure
robability of Pr=5.498< 10" 4. With the first four moments of
91(X)=2M;+2M3;—4.55 (B=3.334 (289) Fhe perforymancFe function, parameters, ¢ andd defined in Eq.
g>(X)=2M;+M,+M3;—4.55 (B=3.364  (28h) (25 are readily obtained to bex=17.030, b=-4.996, c
=14.904, andd=0.709. SinceA =b?—4cd=—17.2880, the
Us(X)=M;+M,+2M;—455 (B=3.3649  (28c) PDF of the standardized performance functigis in the form of
94(X)=|\/|1+2|V|2+ M3—4.5S (BF:3-364) (28d) Eq.(27e). Using F(+00)=l, Kin Eq.(27e) is K=4263.42 and

. L . ) the PDF ofz, becomes
Since this is a series system, the performance function of the

system can be defined as the minimum of the above, i.e., f(zu):4263-4214-904"'4-99&u+0-70935)712'015
G(X)=min{g1(X),g2(X),g3(X),g4(X)} (28 Xexd —26.472tan1(0.341z,— 1.204 ] (30)
whereM; andS=independent log—normal random variables with By substituting Eq(30) and B,,,=4.655 into Eq.(26), the 4V
mean and standard deviations pfy,=200m, pg=50, oy reliability index isB 4= 3.243 with corresponding probability of
=30tm, ando g=20t. Using the mean values of all the variables failure of Pr=5.91x 10 *.
in Eq. (28e), G, as defined in EqY9) is Using Monte Carlo simulationdCS) with 1 million samples,
G, =Min{2* 200+ 2* 200~ 4.5* 50,2 200+ 200+ 200 the erbqbility of failure fqr this .sy.s'Fem' is estimated to be 5.34
X 10~ % with a corresponding reliability index g8 =3.272. The
— 4,550,200+ 200+ 2* 200~ 4.5* 40,200+ 2* 200+ 200 coefficient of variationfCOV) of this MCS estimate is 4.32%. In
this case, only 20 function calls are usédlith a total of 20
—4.540} =min{575,575,575,575= 575 estimating points for all the variabled-or this example, one can
Substituting the mean values of all the variables exdépt see_that bOth thle results of the th'_r(:]' ‘End fourth-mcl)menthapprox;]-
into Eq. (28¢), G, as defined in Eqs9) becomes mations are in close agrgem_ent with the MCS results, w greast e
_ second-moment approximation has gross ef4@f overestima-
Gy =min{2M, + 2* 200 4.5* 50,2V ; + 200+ 200— 4.5* 50 M tion of the reliability index.

+200+ 2*200— 4.5 40 M 1 + 2* 200+ 200~ 4.5* 40}
Example 2

=min{2M;+175,M, +175, M, +375M; +375 The second example is also a one-story and one-bay elastoplastic

frame as shown in Fig.(B) (after work by Ono et al. 1990The
statistics of the member strengths and loads are as follows: mean
Similarly, G;, i=2, 3, 4, are, respectively, values are wy;=pm2=500 ftkip, wnm3=667 ftkip, g

=min{2M,+175, M, +375
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=50 kip, andp.g,=100 kip; standard deviations atg,;=0o >

=75 ftkip, oy3=100 ftkip, o5, =15 kip, ando5,=10 kip. The
performance functions that correspond to the five most likely fail-
ure modes obtained from stochastic limit analysis are listed as
follows with the FORM reliability index for each mode listed in
parentheses to show the relative dominance of the different

modes:
g1=M;+3M,+2M3—155,—10S, (Br=3.55) (31a)
U,=2M;+2M,— 155, (Bp=3.247) (31b)
U3=M;+M,+4M;—155,—10S, (B=3.848 (31c)
04=2M;+M,+M3—155;, (Br=3.562 (31d)
gs=M;+M,+2M3— 155, (Br=3.789 (31¢)
Us=M1+2M,+M;— 155, (Br=3.562 (31f)

For this example, the correspondi@y of Egs.(9) is as fol-
lows:

G, =1250 ftkip
G,=min{917+M,250+ 2M}
Go=mMin{917+ My, 250+ 2M 5,84+ 3M ,}
G3=min{1250,750 M 3,250+ 2M g, — 750+ 4M 3}
G,=2000- 15S;
Gs=min{1250,2584- 10S,}

Using the point estimate method with five estimating points,
the first four moments oG4, G,, Gz, G,, andGs are approxi-
mately

w1=1,248.98 ftkip, o,=146.79 ftkip,
azy=—0.293, a,=2.767,
wo=1,248.98 ftkip, o,=146.79 ftkip,
a3,=0.291, a4p=2.767,
pw3=1,246.88 ftkip, 03=29.229 ftkip,
ag3= —9.265, a,3=88.842,
wa=1,250.00 ftkip, 0,=225.00 ftkip,
agy=—0.927, ayy=4.547,
ws=1,250.00 ftkip, 05=0.00 ftkip, azs=--,as5=--,

In this casep =0, whereasx ;s and a 45 cannot be obtained ac-
cording to Egs(4). This is becaus&; is almost a constant and it
has almost no influence on the resultsr@f, asg, anda,g . Any
values ofa s andays can be used; e.go35=0 anda =3, and
then use Eq9.10) as usual, or substitu8; as a constant in Eqgs.
(9). The results would remain the same.

Then using Eqs(10), the first four moments o6* are ap-
proximately wg=1,244.85, 0¢=307.523, a3o=—0.307, and
Sy Tehn 3426

With these first four moments of the performance function
G*, the 2V reliability index is B,y =4.048, whereas the\3
reliability index of Eqgs.(24) is B3y =3.437 with corresponding
failure probability ofP=2.937x 10" 4. The 4M reliability index
of Eq. (26) gives B,y=3.276 with corresponding failure prob-
ability of P.=5.268< 10" 4. MCS with 1 million samples gives a
probability of failure for this system of 6.4510™“ with corre-

Table 1. Computational Results for Example 2 with Different Types
of PDFs

Variable Weibull type Gamma type Gumbel type Normal type
G 1,242.12 1,244.58 1,244.41 1,243.58
og 317.852 308.823 302.810 311.894
asg —0.216 —0.207 —-0.310 —0.054
QG 3.199 3.138 3.765 3.038
Bom 3.908(16%) 4.030(15% 4.110(30% 3.987(5%)
Bam 3.480(3%) 3.590(2%) 3.476(10% 3.861(2%)
Pe 2.508<107% 1.652x10°% 2.543<107% 5.651x10°°
Bam 3.381(0%) 3.528(0%) 3.178(1%) 3.863(2%)
Pe 3.614<10°% 2.094x10 4 7.145<10 4 5.591x10 °
Bucs 3.379 3.515 3.151 3.794
Pe 3.63x10°*  2.2x10°*% 8.14x10°* 7.4x10°°
COV of Pe 5.2% 6.7% 3.5% 11.6%

Note: Percentage of error in the reliability index relative to that of MCS
is in parenthesis.

sponding reliability index of3 =3.218. The COV of this MCS
estimate is 3.94%. For this example, the 3eliability index errs
about 6%, whereas the results of the fourth-moment approxima-
tion is in close agreement with the MCS results. Again tiv 2
reliability index has a significant error of about 25%.

The reliability analyses for this examplexample 2 were
extended and different types of distribution of the random vari-
ables were assumed. Assuming all the member strengths and
loads are Weibull random variables, the results of the moment
method and of the MCS with 1 million samples are summarized
in column 2 of Table 1. Results for gamma, Gumbel, and normal
distributed random variables are also summarized in columns
3-5, respectively, in Table 1. From Table 1, one can observe that
irrespective of the types of distribution, both th&3and 4V
reliability indices are in close agreement with the MCS results.
The 2M reliability indices, however, consistently contain signifi-
cant error.

Finally, this example is extended further to examine the appli-
cability (and limitation to problems with extremely small prob-
ability of failure; to do this, the mean loads are assumed to be
ps1=35kip and wg=75kip. Using the seven-point estimate,
the first four moments oGG* are approximately.s;=1,470.13,
06:260.32,()(3@:_0.096, anda4G:3.186. W|th these fII‘St
four moments of the system performance function, thé li-
ability index is B,y=5.647, and the Bl reliability index is
Bsm="5.207 with corresponding failure probability &f-=9.58
% 1078, The 4M reliability index is found to be8 4, = 4.652 with
corresponding failure probability ofPr=1.64x10"%. Using
MCS with 30 million samples, the probability of failure for this
system is 5.338 10~ ¢ with corresponding reliability index of
=4.403. The COV of this MCS estimate is 7.91%. For this ex-
ample, the 31 and 4M reliability indices contain errors of about
18 and 5.6%, respectively, whereas thé 2eliability index over-
estimates the correct value by about 28%. It is interesting to ob-
serve that in this case of very small failure probability, the accu-
racy of the M reliability index has deteriorated.

Example 3: Two-Story One-Bay Truss Structure

The third example is an elastoplastic truss structure with two
stories and one bay, shown in Fig. 4, which is also a series sys-
tem. The statistics of the member strengths and loads are as fol-
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Fig. 4. Two-story one-bay truss

ling, and thus may be assumed to be brittle, i.e., once failure
occurs the strength of a component is reduced to zero. In these
two cases, each of the systems is a nonseries system.

For the parallel-chain system shown in Figasthere are two

lows: mean values argur;=pur,=90kip, wr3=9kip, pr4 failure modes with respective performance functions of

=prs=48Kip, pre=pr7=21Kip, prg=15Kip, pro=pr10

=30kip, pp;=11kip, and pp,=3.6kip; the coefficients of 9:=R;—S (33)
variation areVy;=...=V11,=0.15,V,=0.3, andV,=0.2. The _ in(R» Ra Ry — 1/2 in(R» Ra) Ry1—
performance functions that correspond to the eight most likely 9z=maxmin(Rz,Rs,Ra) ~1/2S, ma{ min(Rz,Rs).Ra] (:S,,}
failure modes are given belovafter work by Ono et al. 1990 ] . ]

with the respective FORM reliability indices listed in parentheses in Which fracture strengtiR; and loadS are independent log—

showing that none of the modes are significantly dominant. normal random variables with means deviations @k,
=2,200 kg, ro=2,100 kg, . rz= 2,300 kg, L.ga= 2,000 kg, and

9:=0.707T,+0.707T5—2.2F; (Be=3.409 (32a) ns=1,200kg, and standard deviations ofy;=220Kg, og,

92=Te+0.707T g~ 1L.2F—F, (Bp=3.497 (32)  ~210KQ,0r;=230kg, 0g4=20kg, andos=240 kg.
Similar to, in Fig. %a) for the truss in Fig. &), the corre-
g3=T3+0.707T5+0.707T o~ 2.2F; (Br=3.264 sponding performance functions for each of the failure modes can
(32) be shown to be those listed below:
g4:T8+ 0707]]—10_ 12:]_ (BF:3333 (32d) gl=ma){T1— 112F1+0826:2,m|n(T2_4/3F1,T3_ Fl
95=Te+T7—1.2F; (Br=3.819 (32) +3/4F 5, T4—5/4F 5, Ts— 5/3F 1 + 5/4F )] (34a)
9e=T3+0.707s—1.2F —F, (Be=3.484  (32f) g,=max T,—0.2087; — 0.826F,, min(T,— 4/3F 1, T,

g,=0.707T4+0.707T 0~ 1.2F, (Br=3.846 (329

Using the five-point estimate, the first four moment<df are
approximatelypg=22.316,05=5.379, a3g= — 0.408, andu g —F2,T,=5/3F)] (34c)
=3.566. With these first four moments of the system performance —maX T,—1.40F . —0.217F - min(T+—F- T-—4/3F
function, the moment-based reliability indices g, =4.148 Ga=maxTs—1. v 2:MIN(Ty = F2. T2 !

— 3/4F 5, T4~ 5/3F ,— 5/4F 5, Ts— 5/4F )] (34b)
J3= ma){T3_ 0155:1+013:2,m|n(T1_4/3F1+ Fl’TZ

and B3y =23.356 with P.=3.942<x10"% and B ,,=3.229 with —F,,T3—F;,Ts—5/3F,)] (34d)
P-=6.213x 10" 4. Using MCS with 1 million samples, the prob- )
ability of failure for this system is 7.8610 * with a correspond- gs=max{ T5—0.258 ,+0.217F,, min(T, —4/3F  +F5, T

ing reliability index of 3 =3.161. The COV of this MCS estimate

is 3.57%. For this example, theMB reliability index errs about ~F2.T4= 53] (34€)
6%, whereas the M reliability index errs about 2%. The\2 where fracture strengt; and loadF; are independent log—
reliability index has a significant error of about 30%. normal random variables with means and standard deviations of

1= 2= 40, prs=10 pra=prs=20 wp =7t and pg

=2t, and standard deviations of;;=01,=6t, o1,=1.%, 014
=015= St, OF1~ 21t, andO’FZZO.a.

lllustrated next are two brittle systems that are nonseries systems, Observe that the performance functions of the individual fail-
a simple parallel-chain system and a truss system, shown in Figsure modes of both of these nonseries systems involve the maxi-
5(a and b, respectively. Assume that the individual components mum and minimum functions of the component’s properties, and
of each system will fail by tensile fracture or compressive buck- therefore are not smooth functions.

Example 4: Two Brittle Systems
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Using the five-point estimate, the first four moment<df are

re=293.432,05=76.352,a35=—0.574, anda,c=3.265. Fi-
nally, with the first four moments of the performance function, the
F, F, moment-based results are as follows:
= B,y =23.843
w w Baw=2.976 with Pp=1.460<10"3
Z I i e By 3170 with Pp=7.634¢10-*
‘A M M

MCS with 500,000 samples gives the probability of failure for
this system as 5.2610™* with corresponding reliability index of
B=3.276. The COV of this MCS estimate is 6.16%. One can see
that the 2V reliability index contains a significant number of
errors(17%) and the 3/ reliability index underestimates the re-
liability index by 9.2%, whereas theM reliability index has
about 3.2% error which is still large. Correctly, using E@.and

L=1¢' L=16'

T
X

Fig. 6. Beam-cable system

For Egs.(33) of the parallel-chain system, the first four mo- : : ! ¢
ments of G* are approximatelyps=993.3599,0 .= 316.836, (8), the five-point estimates for the first four moments e
aag=—0.275, anda,s=3.109. With these the first four mo- =297.270,0=78.780,035= —0.2089, andx,c=3.2546. With

ments of the performance function, the moment-based reliability these more accurate first four moments of the performance func-
indices are as follows: tion, the 2M reliability index isB,y =3.733 and the Bl and 4V

reliability indices areB 3y =3.315 and3 4= 3.255. Clearly, with
these latter results, the third- and fourth-moment approximations
are now in closer agreement with the MCS results. This means
that if the first four moments are correctly obtained, the reliability
of a system can be computed without only significant error. As

MCS with 500,000 samples yield the probability of failure for illustrated in th?s example, the approximation of the system per-
this system as 2.50610~ 3 with a corresponding reliability index ~ formance function using Eqé9) and the moments generated with

of B=2.806. The COV of this MCS estimate is 2.82%. One can Eqgs.(10) may, in rare cases, conFain significant error. In this case,
see that both the results of the third and fourth moment approxi- E4S-(7) and(8) may be required in order to obtain more accurate

BZM:3'135'
Baw=2.802 with Pr=2.543x10 3
Baw=2.818 with Pr=2.413x10 3

mations are in close agreement with the MCS results, whereas thd€Sults for the moments.

second-moment approximation overestimated the reliability index
by 12%.
For Eqgs.(34) of the truss system, the first four moments35f

are rec= 8972,0'@2 3732,0[362 _0165, andX4G: 3.752. F|' 1.

nally, with these first four moments of the performance function,
the moment-based results are as follows:

BZM:2'4O4
Baw=2.285 with Pr=0.0111
Baw=2.226 with Pr=0.0130

MCS [performed independent of E(B4), i.e., by considering all

the possible sequences of component failures that can lead to
system failurg¢ with 500,000 samples, gives the probability of
failure for this system as 0.0139 with a corresponding reliability
index of 3 =2.199. The COV of this MCS estimate is 1.19%.

Example 5: Beam-Cable System

Consider the simple elastoplastic beam-cable system shown in

Fig. 6 (after work by Ang and Tang 1984The performance 3.

functions of the potential failure modes are listed below with the
respective FORM reliability indices indicated in parentheses:

g1=6M—L%2 (Br=3.322 (35a)
9,=F,L+2F,L—2wL2 (Br=3.647 (35h)
gs=M+F,L—wL2/2 (Bg=4.515 (350)
g,=2M+F,L—wL2 (Bp=4.515 (35d)

where M, F;, F,, andw are normally distributed with mean
deviations ofp,,=2 kip/ft, wg,1=60kip, we,=30Kip, anduy
=100 ft/kip, and COVs oV,,=0.2 andVg=Vy=0.1.
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Principal Conclusions

A moment-based method for assessing the system reliability
of series and nonseries structures was proposed, with empha-
sis on series systems. The method directly calculates the re-
liability indices (and associated failure probabilitgased on

the first few moments of the system performance function of
a structure. It does not require a reliability analysis of indi-
vidual failure modes; also, it does not need iterative compu-
tation of derivatives, nor computation of mutual correlations
among failure modes, and does not require any design
points. Thus, the moment method proposed should be more
effective for evaluation of the system reliability of complex
structures than currently available computatiomain-MC9
methods.

The method also includes the approximate system perfor-
mance functionG*(X) of Egs. (9) and the first four mo-
ments of Eqs(10), both of which lead to significant simpli-
fication of the calculation of system reliability indices.

The accuracy of the results obtained with the proposed
method was thoroughly examined by comparisons with large
sample Monte Carlo simulations. The fourth-moment reli-
ability index for a structural system is invariably close to the
corresponding reliability index obtained from large sample
Monte Carlo simulations. The error associated with the third-
moment reliability index may be acceptable for practical pur-
poses, whereas the second-moment reliability index invari-
ably leads to very significant unacceptable errors.

The accuracy of theM reliability index inferred above is
generally limited to problems with not very small failure
probabilities. However, for problems that involve extremely
small failure probabilities, such as the final case examined in



example 2, the first four moments may not be sufficient; in Cornell, C. A.(1966. “Bounds on the reliability of structural systems.”
such cases, higher-order moments would be required for ac- J. Struct. Div. ASCE93(1), 171-200.
curate results which would necessarily entail more compli- Ditlevsen, 0(1979. “Narrow reliability bounds for structural systems.”
cated calculations. J. Struct. Mech.7, 453-72.

5. There may be occasions, such as that in the case examined ifprigoriu, M. (1983. “Approximate analysis of complex reliability prob-
example 5, when the exact system performance function and !ems.” Struct. Safetyl, 277-288.

associated moments of Eq3) and(8) may be required for

more accurate results. Nevertheless, for realistic and practi-

cal structures, theld and 4M reliability indices obtained by
simplifying Egs.(9) and(10) should be sufficiently accurate
for overall assessment of system reliability.
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