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Abstract
  The objectives of the present paper are to investigate the applicable range of the third-moment method for 

structural reliability and to suggest a simple third-moment method for practical application in engineering. 
The applicable range of the second-moment method is also given. The applicable range of the third-moment 
method is obtained through investigation of the differences among several third-moment methods. Within the 
applicable range, it is found that the simple reliability index has a good agreement with the original one, and 
it is therefore suggested as a simple third-moment reliability index. Since only the first three central moments 
of the performance functions are used, and since it is unnecessary to know the probability distribution of the 
basic random variables, the present method should be practical in engineering. In order to investigate the 
efficiency of the proposed method, several examples are examined under different conditions.
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1. Introduction
The fundamental problem in structural reliability 

theory is the computation of the multi-fold probability 
integral 

where X=[x1, ..., xn]
T, in which the superscripted T= 

transpose, is a vector of random variables representing 
uncertain structural quanti t ies, such as loads, 
environmental factors, material properties, structural 
dimensions, and variables introduced to account for 
modeling and prediction errors. fX(X) denotes the joint 
probability density function (PDF) of X. G(X) is the 
performance function defined such that G(X)≤0, the 
domain of integration, denotes the failure set, and Pf is 
the probability of failure.

Difficulty in computing this probability has led to 
the development of various approximation methods, 
of which the first-order reliability method (FORM) 
(Hasofer and Lind, 1974; Rackwitz, 1976; Shinozuka, 
1983) is considered to be one of the most acceptable 
computation methods. Due to the contributions of 
numerous studies, many reliability methods based on 
FORM have been developed. These include the second-
order reliability method (SORM) (Der Kiureghian et 
al., 1987) and the response surface approach (Faravelli, 

1989; Liu and Moses, 1994).
It has been reported that several practical problems 

would be accounted when using FORM and the 
methods based on FORM (Zhao and Ono, 2000a). 
First, all the basic random variables are assumed 
to have a known probability distribution. However, 
in reality, the probability distributions of random 
variables are often unknown due to the lack of 
statistical data. Secondly, the derivative-based iteration 
has to be used, and the iteration may be endless and the 
computation process is quite complicated. Thirdly, the 
problem of multi-design points remains. Therefore, it is 
important to find a simpler and more effective way to 
conduct reliability analysis, even when the probability 
distributions of random variables are unknown.

Recently, a method based on moment approximations 
was proposed for structural reliability analysis. It is 
based on another expression of failure probability as 
follows:

where z=G(X) is a lso a random variable with 
corresponding PDF fz(z).

According to Eq. 2, the failure probability can be 
evaluated directly by utilizing the central moments 
of the performance function. If the central moments 
of the performance function can be obtained, the 
failure probability, which is defined as the probability 
when the performance function is less than or equal 
to zero, can be expressed as a function of the central 
moments. By finding the relationship between the 
failure probability and the central moments, the failure 
probability can be obtained.
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For a performance function z=G(X), without loss of 
generality, G(X) can be standardized as follows:

where μG and σG are the mean value and standard 
deviation of G(X), respectively. Then Eq. 2 can be 
expressed as

where

where β2M is the second-moment (2M) reliability index.
If z=G(X) is a normal random variable, β2M is 

correct, and the failure probability can be expressed as

where Φ is the cumulative distribution function (CDF) 
of a standard normal random variable.

When z=G(X) is a non-normal random variable, 
the reliability index expressed in Eq. 5 is usually not 
correct, and the first two moments are inadequate, 
high-order moments are invariably necessary.

The third-moment (3M) method has been suggested, 
and several 3M reliability indices have been proposed 
to approximate the probability of failure (Zhao and 
Ono, 2001a). However, the applicable range of the 3M 
method has not been adequately investigated. Further, 
it is difficult to select a suitable reliability index from 
the many 3M reliability indices.

The ob jec t ives o f the p resen t paper a re to 
investigate the applicable range of the 3M method 
for structural reliability and to suggest a simple 3M 
method for practical application in engineering. The 
applicable range of the 2M method is also given. 
The applicable range of the 3M method is obtained 
through investigation of the differences among several 
3M methods. Within the applicable range, it is found 
that the simple reliability index has a good agreement 
with the original one and it is therefore suggested as 
the simple 3M reliability index. Since only the first 
three central moments of the performance functions 
are used, and since it is unnecessary to know the 
probability distribution of the basic random variables, 
the method should be practical in engineering. In 
order to investigate the efficiency of the proposed 
method, several examples are examined under different 
conditions.

2. Review of 3M Reliability Indices
For a performance function z=G(X), if the first three 

moments are obtained, assuming that the standardized 
variable zu defined by Eq. 3 obeys three-parameter (3P) 
distributions (Tichy, 1994; Zhao and Ono, 2000b; Zhao 
and Ang, 2002), respectively, several 3M reliability 
indices can be derived.

Assuming that zu obeys the 3P lognormal distribution 
(Tichy, 1994), the standard normal random variable u 

can be expressed as the following function (Zhao and 
Ono, 2001a)

where

where α3G is the third dimensionless central moment, 
i.e., the skewness of z=G(X), Sign(x) gives –1, 0 or 1, 
depending on whether x is negative, zero or positive.

The 3M reliability index based on Eq. 6 is obtained 
as

where β3M is the 3M reliability index. Here, the 
reliability index defined by Eq. 8 is referred as β3M-1.

Assuming that zu obeys the 3P square normal 
distribution (Zhao and Ono, 2000b), u can be expressed 
as the following function

where

The 3M reliability index based on Eq. 9 is obtained 
as

From Eq. 10, α3G should be limited in the range of 

Hereafter, the reliability index defined by Eq. 11 is 
referred as β3M-2.

According to the definition of the 3P Gamma 
distribution introduced by Zhao and Ang (2002), the 
standard form of the CDF of zu is expressed as

where Fg , λ2 is the CDF of the standard Gamma 
distribution with parameter λ2. 

The 3M reliability index based on Eq. 13 is obtained 
as

Here, the reliability index defined by Eq. 15 is 
referred as β3M-3.
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3. Applicable Range of 3M Method
Obviously, the 3M method is an approximation 

method, and thus it is expected to have a range 
of application. The representative PDFs of the 3P 
distributions are depicted in Figs.1. and 2.. From 
Figs.1. and 2., one can see that the left tail of the 
PDF is long for negative α3G, and the right tail is long 
for positive α3G. Because the failure probability is 
integrated in the left tail according to Eq. 4, it is easy 
to understand that the 3M method is more suitable for 
negative α3G than positive α3G.

The moment reliability index can be obtained using 
the following equation (Zhao and Ono, 2000b).

where zu is the standardized performance function 
defined by Eq. 3, aj, j=1, ..., k, are deterministic 
coefficients that are obtained by making the first k 
central moments of Su(u) equal to those of zu, and u is a 
standard normal variable.

Using Eq. 16, in order to obtain the rth order 
polynomials of u, the first r+1 moments must be 
known. That is to say, the first three moments only 
determine a square polynomial of u. In fact, the above 
β3M-2 is derived from Eq. 16 when r=2. Since it is 
difficult to approximate a performance function with 
third power of u using square polynomials of u, the 

3M method may not be applicable to a performance 
function with more than second power of u.

Because a practical reliability problem should have 
only one solution, all of the 3M reliability indices are 
expected to give similar results of failure probability 
for a specific reliability problem. If the relative 
differences among β3M-1, β3M-2, and β3M-3 are beyond the 
allowable value, it is thought that the 3M method is 
out of its applicable range. Conversely, the applicable 
range of the 3M method can be determined by the rule 
that the relative differences among β3M-1, β3M-2, and 
β3M-3 are below the allowable value.

From Eqs. 8, 11 & 15, one can see that although 
β3M-1,  β3M-2, and β3M-3 are based on different probability 
distributions and described by different forms, they are 
all functions of β2M and α3G. Thus, the applicable range 
of the 3M reliability index will be determined using 
β2M and α3G as parameters.

β3M-1, β3M-2, and β3M-3 changes with respect to β2M are 
depicted in Fig.3. for α3G=-1.0, -0.8, -0.6, -0.4, -0.2, 
-0.05, 0, 0.05, 0.2, 0.4, 0.6, 0.8, and 1.0. From Fig.3., 
one can see that the smaller the β2M, the smaller the 
differences among the three 3M reliability indices, and 
all of them become closer to β2M with the decrease of 
β2M. The smaller the α3G, the smaller the differences 
among the three 3M reliability indices, and all of 
them become closer to β2M with the decrease of α3G. 
One can also see that the differences among the three 

Fig.1. PDF with Negative Skewness Fig.2. PDF with Positive Skewness

Fig.3. 3M Reliability Indices with Respect to β2M



132 JAABE vol.5 no.1 May 2006 Yan-Gang Zhao

indices for positive α3G is much larger than those for 
negative α3G. This is because the 3M method is more 
suitable for negative α3G than positive α3G, as described 
earlier. β3M-1, β3M-2, and β3M-3 changes with respect to 
α3G are depicted in Fig.4. for β2M =2.0, 3.0, and 4.0. 
From Fig.4., again, one can see that for negative α3G, 
β3M-1, β3M-2, and β3M-3 are almost the same, but for 
positive α3G, β3M-1, β3M-2, and β3M-3 are almost the same 
when α3G is small; however, as α3G becomes larger 
the differences among β3M-1, β3M-2, and β3M-3 become 
remarkable.

The relative differences among β3M-1, β3M-2, and 
β3M-3 with respect to α3G are depicted in Fig.5. for β2M 
=2.0, 3.0, and 4.0. The relative difference is given 
as r=2(βMax -βMin)/(βMax +βMin), where βMax and βMin 
are the maximum and minimum of β3M-1, β3M-2 and 
β3M-3, respectively. From Fig.5., one can see that for 
positive α3G, the larger the α3G, the larger the relative 
differences among the three 3M reliability indices, but 
for negative α3G, the variation is irregular. 

For practical cases, β2M is generally considered to 
be not very small, and the discussion in this paper is 
concentrated on cases of β2M>1.

For the case of α3G>0, the relative differences among 
β3M-1, β3M-2 and β3M-3 are listed in Table 1. for β2M =2.0, 
2.5, 3.0, and 4.0, respectively, corresponding to a 
certain value of α3G. Using the means of non-linear fit 
with a large amount of data like Table 1, α3G satisfying 
the allowable relative difference of r is approximately 
obtained as

For the case of α3G<0, the relative differences 
among β3M-1, β3M-2, and β3M-3 are listed in Table 2. for 
β2M=2.0, 2.5, 3.0, and 4.0, respectively, corresponding 
to a certain value of α3G. Similarly, using the means of 
non-linear fit with a large amount of data like Table 2., 
α3G satisfying the allowable relative difference of r is 
approximately obtained as 

Thus through the above investigation, the applicable 
range of the 3M method for β2M>1 is:

Particularly, for r=2%, then

For example, if β2M=2.0, the applicable range of 
the 3M method is –1.2≤α3G≤0.4, and if β2M=4.0, the 
applicable range of the 3M method is –0.6≤α3G≤0.2.

4. Simplification of 3M Reliability Index
The expressions of β3M-1, β3M-2, and β3M-3 are all very 

complex. For obvious reasons, the 3M reliability index 
for users or designers should be as simple and accurate 
as possible. 

For -1<α3G<1, Eq. 10 can be simplified as the 
following equation with an error of less than 2% (Zhao 
et al., 2001b).

Substituting Eq. 20 into Eq. 11

For small |α3G|, through the Taylor expansion of the 
root term, Eq. 21 can be simplified as 

Hereafter, the third moment reliability index defined 
by Eq. 22 is referred as β3M-4.

The comparisons between β3M-2 and β3M-4 with 
respect to α3G are shown in Fig.6. for β2M =2.0, 3.0, 
and 4.0. The applicable range of β3M-4 is shown in 
Fig.7. for an allowable value r=2%. From Figs.6. and 
7., one can see that β3M-4 approximates β3M-2 very well 
in the applicable range. Thus, β3M-4 is the simple 3M 
reliability index suggested for practical application in 
engineering.

5. Applicable Range of the 2M Method 
It is well known that the 2M method is only suitable 

for cases in which the performance function G(X) 
can be approximately expressed by a normal random 
variable, that is, when the skewness α3G is quite small. 
However, the applicable range of the 2M method has 
not been reported according to our knowledge. The 
problem will be investigated in this section. When |α3G| 

Fig.4. 3M Reliability Indices with Respect to α3G
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is very small, all three  β3M can be expressed as (see 
Appendix A)

Because β2M is correct only when z=G(X) is a nearly 
normal random variable, i.e., when |α3G| is quite small, 
Eq. 23 can be used as an accuracy modification of β2M. 
If the relative errors between  β3M and β2M are below 
the allowable value r, as shown in Eq. 24, it is thought 
that the 2M method will give good results. 

Substituting Eq. 23 into Eq. 24, finally, for β2M>1,Eq. 
24 can be simplified as

and then Eq. 25 defines the applicable range of the 2M 
method. Here, if r is assumed as 2%, then

The applicable range of the 2M method is also 
depicted in Fig.7. together with the applicable range of 
the simple 3M reliability index. From Fig.7., one can 
see that the applicable range is very small when β2M 
>2, and when β2M tends to equal to 1.0, the range of α3G 
tends to equal to that of the 3M method. One can easily 
understand this from Eq. 23.

6. Numerical Examples
In order to investigate the efficiency of the suggested 

method, several examples are examined under different 

conditions.
Example 1. 

Consider the following performance function, a 
plastic collapse mechanism of a one-bay frame, which 
has been used by Der Kiureghian et al. (1987)

where the variables xi are mutually independent and 
lognormally distributed and have means of μ1=μ2=μ3- 
=μ4=120, μ5=50 and μ6=40, respectively, and standard 
deviations of σ1=σ2=σ3=σ4=12, σ5=15 and σ6=12, 
respectively.

Because all the random variables in the above 
function have a known PDF, the reliability index 
can be readily obtained using the method of FORM. 
The FORM reliability index is βF =2.348, which 
corresponds to a failure probability of Pf = 0.00943.

The skewness of the variables xi can be easily 
obtained as α31=α32=α33=α34=0.301, α35=α36=0.927. 
The mean value, standard deviation and skewness of 
G(X) are readily obtained as μG=270, σG= 103.27, 
and α3G=-0.528. Using Eq. 5, the 2M reliability index 
and the corresponding failure probability are readily 
obtained as β2M=2.615, and Pf =0.00447. Noting that –
0.918< α3G=-0.528<0.306, it is in the applicable range 
of the 3M method. Using Eq. 22, the 3M reliability 
index is readily obtained as β3M=2.255. The probability 
of failure corresponding to the 3M reliability index is 
equal to 0.01207.

The true value of the failure probability is Pf = 0.0121 
(Der Kiureghian et al., 1987) and the corresponding 
reliability index is equal to 2.254. Because |α3G| 
=0.528>>0.0538, the 2M method is significantly in 
error, and the probability of failure obtained using the 
proposed method is closer to the true value than that of 

β2M 2.0 2.5 3.0 4.0

α3G 0.30 0.38 0.46 0.21 0.28 0.35 0.17 0.22 0.28 0.12 0.16 0.20

Relative difference 0.5% 1.0% 2.0% 0.5% 1.0% 2.0% 0.5% 1.0% 2.0% 0.5% 1.0% 2.0%

Table 1. The Relative Difference among β3M-1, β3M-2, and β3M-3 (α3G>0)

β2M 2.0 2.5 3.0 4.0

α3G -0.72 -0.92 -1.25 -1.05 -1.22 -1.52 -0.32 -0.65 -1.84 -0.18 -0.3 -0.55

Relative difference 0.5% 1.0% 2.0% 0.5% 1.0% 2.0% 0.5% 0.9% 2.0% 0.5% 1.0% 2.0%

Table 2. The Relative Difference among β3M-1, β3M-2, and β3M-3 (α3G<0)

Fig.5. Relative Difference among 3M Indices Fig.6. Comparisons between β3M-2 and β3M-4 Fig.7. Applicable Range of β3M-4 and β2M
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FORM.
Example 2.

Consider the following parabolic performance 
function that was proposed by Der Kiuregian and 
Dakessian (1998). 
where b=5, k=0.5 and e=0.1.

If FORM is used to solve this problem, there are 
two design points which are successfully obtained by 
Der Kiuregian and Dakessian (1998) as: X1*=[-2.741, 
0.965]T with β1=2.906, and X2*=[2.916, 1.036]T with 
β2= 3.094. 

If the proposed method is used, using point estimates 
(Zhao and Ono, 2000c), the first three moments of 
G(X) can be easily obtained as μG=4.495,  σG=1.229, 
and α3G=-0.555. Using Eq. 5, the 2M reliability index 
and the corresponding failure probability are readily 
obtained as β2M=3.657 and Pf= 0.000127, respectively. 
Using Eq. 22, the 3M reliability index is readily 
obtained as β3M=2.947. The probability of failure 
corresponding to the 3M reliability index is equal to 
0.001604.

The reliability index using Monte-Carlo Simulation 
(MCS) obtained by Der Kiuregian and Dakessian 
(1998) is β=2.751, and the corresponding failure 
probability is 0.00297. One can see that although the 
present method does not require the derivative-based 
iteration and does not use the multiple design points, 
it provides comparable result of the two first-order 
reliability indices. However, the result of the present 
method still has a relative error of 6.88% with the MCS 
result. This may be because the first three moments 
are inadequate for such a problem with strong non-
normality (Zhao and Ono, 2001c).
Example 3.

Consider the following performance function of a 
simple structural column (Zhao et al., 2001b).

where A is the nominal section area, x1 is a random 
variable representing the uncertainty of A, x2 is the 
yield stress, and x3 is the compressive stress. Assume 
the column has an H-shape and is made of structural 
steel with a H300×200 (JIS 1977) section and having 
an area A=72.38cm2, and a material of SS41 (JIS 1976). 
The CDFs of x1 and x2 are unknown, and the only 
information about them are their first three moments: 
μ1=0.990,σ1=0.051, α31=0.709, and μ2=3.055t/cm2, 
σ2 =0.364,α32=0.512. x3 is assumed as a lognormal 
variable with a  mean value of μ3=150t, standard 
deviation of α3=45, and skewness α33=0.927.

Because the first three moments of x1, x2, and 
x3 are known, the first three moments of G(X) can 
be easily obtained as μG=68.910, σG=53.238, and 
α3G=-0.476. Using Eq. 5, the 2M reliability index 
and the corresponding failure probability are readily 
obtained as β2M=1.294, and Pf=0.0978. Noting that 

-1<α3G=-0.476<0.618, it is in the applicable range 
of the 3M method. With the aid of Eq. 22, the 3M 
reliability index is readily obtained as β3M=1.250. The 
corresponding probability of failure is equal to 0.1057.

Because the first three moments are known, the 
random sampling of x1 and x2 can be easily generated 

using Eq. 30 (Zhao et al., 2001b) 
Thus, MCS can be easily conducted, and the 

reliability index is equal to 1.275 when the number of 
samplings is taken to be 10,000. One can see the 3M 
method is in close agreement with the MCS result. 
Although |α3G|=0.476>0.23, it is out of the applicable 
range when the allowable value r is assumed as 2%, 
the 2M method also gives a good result. The reason, as 
described previously, is that β2M always tends to equal 
to β3M when β2M tends to equal to1.0. 
Example 4.

The fourth example considers a simple reliability 
problem, shown in Table 3., in which both R and S 
are lognormal variables with mean value, standard 
deviation, and skewness of μR=175,  σR=17.5, α3R= 
0.301, μS=100, σS=20, and α3S=0.608. Because both 
R and S are positive, the five performance functions 
listed in Table 3. are equivalent. The first three central 
moments of the performance functions obtained using 
the seven-point estimates (Zhao and Ono, 2000c) are 
listed in Table 3. with the results of the 2M and the 3M 
reliability indices.

From Table 3., one can see that the 3M method 
is insensitive to the different formulations in the 
applicable range. For Case 4 and Case 5, the results 
of the 3M method are significantly in error. This 
is because  the reformulations of the performance 
function make the skewness exceed the applicable 
range of the 3M method. Therefore, the insensitivity 
of the 3M method to the formulation of the limit-states 
should be limited in the applicable range.

In contrast, the 2M method is very different for the 
different formulations, and it gives an exact result only 
in Case 2 because its skewness is in the applicable 
range. For the other cases, the 2M reliability indices 
are significantly in error because they all exceed the 
applicable range. As for FORM, it has almost the same 
results for the different formulations with the value of 
βF=2.590 and it gives good results for this example.
Example 5. 

In order to investigate the effect of the probability 
distribution of random variables, the fifth example 
considers the following performance function, which 
is an elementary reliability model that is used in many 
situations:

where R is resistance and S is load.
Because only two basic random variables are 
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involved in Eq. 31 and the expression is a linear 
function, FORM generally gives good results for this 
performance function (as shown in Example 4). The 
first three moments of this performance function can be 
easily obtained due to the simplicity of this function.

In the following investigations, the coefficient of 
variation of R is taken to be 0.2 and that of S is taken 
to be 0.4. The following three cases are investigated 
under the assumption that R and S obey different 
probability distributions.

Case 1, R is normal with α3R=0.0 and S is lognormal 
with α3S=1.264.

Case 2, R is normal with α3R=0.0 and S is Weibull 
with α3S= 0.2768.

Case 3, R is lognormal with α3R=0.608 and S is 
Weibull with α3S= 0.2768.

For Cases 1 to 3, the variations of the reliability 
indices, the skewness, and the applicable range of the 
2M and 3M method with respect to μR/μS (the means 
of R and S, respectively) are shown in Fig.8.(a)-(f), 
respectively.

From Fig.8.(a) and (d), one can see that the results 

of the 3M method for Case 1 are in close agreement 
with those of FORM in the whole investigation range 
because α3G is always in the applicable range. The 
2M method, meanwhile, gives a good approximation 
for the results of FORM when μR/μS is small and has 
moderately significant errors when μR/μS is large due to 
the skewness exceeding the applicable range.

For Case 2, Fig.8.(b) and (e) shows that the results 
of both the 2M and 3M methods are in close agreement 
with those of FORM in the whole investigation range 
since α3G is in the applicable range.

For Case 3, one can see from Fig.8.(c) and (f) that 
the results of both the 2M and 3M methods agree very 
well with the FORM results when μR/μS is small. When 
μR/μS is large, the 3M method has significant errors 
(especially when μR/μS>3.0) due to α3G being out of the 
applicable range, and the 2M also produces significant 
errors when μR/μS>2.0, and the reason is as described 
before.

7. Conclusions
The applicable range of the 2M and 3M methods 

G(X) μG σG α3G β2M Applicable range 
of 2M

β3M Applicable range 
of 3M

Case 1 R - S 75 26.575 -0.173 2.822 (-0.049, 0.049) 2.649 (-0.850, 0.283)
Case 2 lnR - lnS 0.574 0.222 -5.86×10-7 2.590 (-0.054, 0.054) 2.590 (-0.927, 0.309)
Case 3 1 - S/R 0.423 0.130 -0.685 3.264 (-0.041, 0.041) 2.604 (-0.735, 0.245)
Case 4 S/R -1 0.82 0.409 0.685 2.007 (-0.080, 0.080) 2.766 (-1.0, 0.399)
Case 5 1/S - 1/R 4.63×10-3 2.16×10-3 0.538 2.144 (-0.072, 0.072) 2.717 (-1.0, 0.373)

Table 3. Formula Insensitivity of the 3M Method

(a) Case 1 (a) (b) Case 2 (a) (c) Case 3 (a)

(d) Case 1 (b) (e) Case 2 (b) (f) Case 1 (b)

Fig.8. Figures for Ex. 5
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are determined, and a simple 3M reliability index is 
suggested to conduct structural reliability analysis in 
engineering. It is found that:
1. The probability of failure can be computed by using 
the 2M method or the proposed 3M method, even when 
the CDFs or PDFs of random variables are unknown.
2. The 3M method is insensitive to the formulations of 
the limit-states function within its applicable range.
3. The 3M method is more suitable for negative α3G 
than for positive α3G. 
4. There are no significant effects on the accuracy of 
the proposed 3M method and the 2M method for the 
different probability distributions of random variables 
within their range of application.
5. Within the applicable range of the 2M and 3M 
methods, the two methods usually give good results 
for reliability evaluations, while for the cases out of 
their applicable range, the first two or three moments 
are inadequate, and much higher-order moments are 
invariably necessary.
6. The 3M method is generally inapplicable to a 
performance function with more than second power 
random variables.
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APPENDIX A
(1) Simplification of β3M-1

For very small |α3G|, with aid of a second-order 
Taylor expansion of log-function  1n(1+x), β3M-1 can be 
rewritten as 

(2) Simplification of β3M-2

For very small |α3G|, with aid of a second-order 
Taylor expansion of  , β3M-2 can be expressed as

(3) Simplification of β3M-3

Because α3G→0, λ→∞, and the distribution tends 
to normality. The standard normal variable u can 
be expressed as a polynomial function of zu as the 
following equation with aid of the Cornish-Fisher 
expansion (Stuart and Ord, 1987)

thus
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