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ABSTRACT: In the earthquake resistance design of frame structures, the yielding of all the beams in flexure
prior to possible yielding of columns is generally considered to be a preferable mode; this is defined as a beam-
hinging pattern in this paper. Structures are therefore generally weak-beam, strong-column designed with a
column overdesign factor (COF). In reality however, the designed weak-beam, strong-column structures may
not collapse according to the preferable failure mode because of large uncertainties in external loads and member
strengths. These uncertainties may change the COF and the structure may collapse according to some un-
preferable failure modes such as the weak story mechanisms. The object of this paper is probabilistic evaluation
of the target values of COFs for which the occurrence probability of unpreferable failure modes can be limited
to within a specific tolerance. A stochastic limit analysis procedure using the linear programming method and
the first-order reliability method is developed, and the likely failure modes of weak-beam, strong-column de-
signed structures are investigated using this procedure. The target value of COF is discussed in probabilistic
terms. It is found that a much higher value of COF is required in the case of uncertain loads and member
strengths than is expected in deterministic cases.
INTRODUCTION

When carrying out the deterministic design of frame struc-
tures, some preferable failure modes often are selected, and
the strengths of the structural members are designed according
to these selected failure modes. The weak-beam, strong-col-
umn designed structure is commonly used in earthquake re-
sistance design to make the frame structure collapse according
to the entire failure pattern, which allows the yielding of all
the beams in flexure prior to possible yielding of columns
(hereafter, it is referred as the beam-hinging pattern). This is
considered to be a suitable failure pattern because of its large
ability to absorb earthquake energy before the structure actu-
ally collapses (Anderson and Gupta 1972; Park and Paulay
1975; Clough and Penzien 1982; Lee 1996).

To ensure that a frame structure collapses according to the
beam-hinging pattern, the columns of the structure are gen-
erally overdesigned with a column overdesign factor (COF).
However, when a frame structure is designed as a weak-beam,
strong-column structure, an important consideration is if the
designed structure collapses according to the designed failure
mode. This problem is caused by large uncertainties in external
loads and member strengths. These uncertainties may change
the designed COF, and the structure may collapse according
to some unpreferable failure modes such as the partially col-
umn-failure pattern.

To introduce uncertainties in external loads and member
strengths into structural design, it is necessary to investigate
all or at least some of the more important failure modes that
result from these uncertainties. However, the number of po-
tential failure modes is generally too large, and the search for
important failure modes may be complicated. It is almost im-
possible for a design engineer to consider such a large number
of failure modes and their occurrence probabilities. It is a gen-
eral requirement for researchers to give a suitable target value
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of COF for which the occurrence probability of unpreferable
failure modes can be limited to within a specific tolerance.

Some case studies have been conducted and some basic
knowledge has been obtained on the value of COF that results
in the beam-hinging pattern mode (Kuwamura et al. 1989;
Kawano et al. 1998). However, almost all the previous studies
investigated only some specific examples, because the analyt-
ical models used were too complicated. General investigation
is needed.

The object of this paper is to discuss the target COF for
such a general case. A stochastic limit analysis procedure using
the linear programming method and the first-order reliability
method (FORM) is developed. Then, using this procedure, the
likely failure modes of weak-beam, strong-column designed
structures under uncertain loads and with uncertain member
strengths are investigated, and the target value of COF re-
quired to ensure that frame structures collapse according to the
beam-hinging pattern is discussed.

STOCHASTIC LIMIT ANALYSIS

Computational Assumptions

For the ductile frame structures considered in this study,
several commonly used assumptions are applied:

• Elastic-plastic frame structures are considered. The failure
of a section means the imposition of a hinge and an ar-
tificial moment at this section.

• The structural uncertainties are represented by considering
only moment capacities as random variables.

• Geometrical second-order and shear effects are neglected.
The effect of axial forces on the reduction of moment
capacities is also neglected.

Stochastic Limit Analysis Combined with FORM

The search for computationally efficient procedures for
identifying significant failure modes has resulted in many ap-
proaches such as the truncated enumeration method (Murotsu
et al. 1984; Melchers and Tang 1985; Xiao and Mahadeven
1994) and mathematical programming techniques (Ma and
Ang 1981; Nafday et al. 1988a,b; Ellis et al. 1991; Ohi 1991).
In this paper, the stochastic limit analysis (Ohi 1991), which
is one of the mathematical programming techniques, is used
because the likely failure modes can be obtained in relatively
short computation time.
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Based on the upper-bound theorem of plasticity (Livesley
1976), failure of a ductile frame is defined as the formation of
a kinematically admissible mechanism due to the formation of
plastic hinges at a certain number of sections. The mechanism
can be identified from the structural analysis when the stiffness
matrix becomes singular. The compact procedure (CP) (Aoy-
ama and Kamimura 1988) of limit analysis is used in this
paper. In this procedure, the equilibrium equation is taken to
be the object function and the ultimate strength is taken as the
limit condition. The limit analysis is defined as the problem
of obtaining, using the linear programming method, the max-
imum load factor that satisfies the equilibrium equation and
the limit condition. This equilibrium equation is

l[E ]{P} = [H ]{r} (1)

where l = load factor; [E] = unit matrix; {P} = load vector;
[H ] = coefficient matrix for the equilibrium equation; and {r}
= vector of member strength.

Applying the Gauss-Jordan method to (1), some columns of
[H ] will become fundamental columns in which only one el-
ement becomes 1 and others become 0. Then the following
two steps are repeated until the load factor reaches its maxi-
mum:

1. Divide {r} into fundamental variables (those correspond-
ing to 1 in the fundamental columns of [H]) and non-
fundamental variables according to the contents of [H].
Change the fundamental variables; increase the load fac-
tor until the utmost value (moment capacity) of a fun-
damental variable is reached.

2. To increase the load factor further, exchange the funda-
mental variables and the nonfundamental variables.

The above CP is conducted at first using the mean values
of the load and member strength. By doing this, some failure
modes will be obtained. The performance function correspond-
ing to each failure mode can be obtained readily using the
principle of virtual work, and the design point and reliability
index for each mode are evaluated by FORM. For the failure
modes that have a smaller reliability index, such as those for
which the condition b # bmin 1 d is satisfied, the CP is con-
ducted again—this time using the design point as a determin-
istic value of the loads and member strengths. Here, bmin is
the minimum value of b corresponding to the obtained failure
modes; the modes that have reliability index b > bmin 1 d will
be truncated. In this paper d is taken to be 1. If the load factor
l obtained in the procedure does not reach 1, which means
the mean load is larger than the utmost load, then the design
point is in the failure area and will be removed from the com-
puter’s memory; otherwise, the design point and reliability in-
dex are evaluated again for the obtained failure modes. The
iteration is continued until no new failure modes are obtained.
The modes that appeared in all the iterations are then the likely
failure modes of the frame structure. Using this method, the
likely failure modes considering nonnormal random variables
can be obtained with few iterations. The obtained failure
modes have been elaborated by Monte Carlo simulation of
limit analysis (Yoshihara 1997).

EVALUATION METHOD OF COF

Basic Assumption in Evaluation

In the results of stochastic limit analysis, the likely failure
modes of a specific structure under a specific load are mainly
dependent on the mean value and coefficient of variation of
the member strength. Because a specific structure is generally
constructed using the same kind of material (generally steel or
concrete) through the whole structure, and the coefficient of
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variation is mainly dependent to the material, the coefficient
of variation of each member strength was assumed to be the
same for all the members in the structure. The mean values of
the member strengths therefore can be used as the main factor
in the investigation.

For one-story, one-bay structures, COF is defined simply as
the ratio between the mean value of the column strength and
the mean value of the beam strength. This is because there is
only one beam and one column at each node for such struc-
tures

Mpc
COF = (2)

Mpb

where Mpc, Mpb = mean values of the ultimate moment of the
columns and beams, respectively.

For multistory, multibay structures, because the number of
beams or columns is different for each node, COF used in the
investigation is defined for each node as the ratio between the
sum of the mean values of the column strengths and the sum
of mean values of the beam strengths at that node, as follows:

MpciO
i

COF(k) = (3)
MpbiO

i

where k = kth node; and Mpci, Mpbi = mean value of the ultimate
moment of the columns and beams, respectively, connected to
the kth node.

For convenience of investigation, the following assumptions
are applied:

• All the beams and columns are designed to make the
structure have the same value of COF at every node, i.e.,
there is only one value of COF for a specific structure.

• The external load is considered to consist of only the
static lateral earthquake loads, which is often used for
simple seismic design. These are assumed to be concen-
trated forces triangularly distributed along the height of
the structures in consideration.

• Plastic moment capacities of sections are statistically in-
dependent of the applied loads and independent of each
other.

All the variables are assumed to have a lognormal distri-
bution. Because the frames in consideration are steel, the co-
efficient of variation of the member strengths is taken to be
0.1 (Ultimate 1990). Because the coefficient of variation for
ground motion is generally taken to be 0.6–0.7 (Kanda 1993;
Recommendations 1993), and considering the other uncertain-
ties included in load modeling, the coefficient of variation for
the lateral forces is assumed to be 0.8.

Evaluation Method

If the value of COF is given for a specific frame structure,
the likely collapse failure modes can be obtained using the
stochastic limit analysis procedure described above. Because
the structure is deterministically designed to collapse accord-
ing to the entire beam-failure mode, the most likely failure
mode is generally the preferable beam-hinging pattern mode,
and all the other likely failure modes are unpreferable failure
modes. Because the second most likely failure mode has the
largest occurrence probability among all these unpreferable
failure modes, the following evaluation index is used in this
paper to evaluate the relative occurrence rate of the unprefer-
able failure modes:

pf 2
g = (4)

pf 1



TABLE 1. Member Strengths of Three-Story, Two-Bay
Structure

Member
(1)

Mean value of strength
(t cm)

(2)

Coefficient of
variation

(3)

C1 1,687 0.1
C2 1,687 0.1
C3 1,687 0.1
C4 3,374 0.1
C5 3,374 0.1
C6 3,374 0.1
G1 3,068 0.1
G2 3,068 0.1
G3 1,534 0.1

FIG. 1. Three-Story, Two-Bay Frame Structure

Here pf1 = occurrence probability of the most likely failure
mode, i.e., the beam-hinging pattern mode; and pf 2 = occur-
rence probability of the second most likely failure mode, i.e.,
the most likely failure mode among all the unpreferable failure
modes.

To ensure that the designed structure collapses according to
the designed preferable failure mode, the relative occurrence
rate of the unpreferable failure modes g should be limited to
within a specific allowable level g0 as follows:

pf 2
g = # g (5)0

pf 1

The larger the value of COF, the smaller the value of the
relative occurrence rate of the unpreferable failure modes. By
conducting stochastic limit analysis using different COFs for
a frame structure, a g-COF curve can be obtained, and the
target value of COF for which (5) is satisfied can be deter-
mined.

The tolerance level g0 should be determined in advance.
However, the value of g0 that should be set is ambiguous be-
cause we do not know clearly what value will be acceptable
to designers. In this paper, two levels of tolerance—g0 = 0.8
and 0.9—are investigated provisionally.

For a specific value of COF, because g is affected greatly
by the load level (Ono and Zhao 1998), g should be investi-
gated under different load levels. To consider this effect, two
levels of reliability index—b = 2 and 3—are used, and the
load levels are designed according to the assumed reliability
levels.

Evaluation Example

As an example of the application of the evaluation method
described above, COF value for a three-story, two-bay frame
structure shown in Fig. 1 was evaluated. For COF = 1.1, the
member strengths are designed as listed in Table 1. For other
values of COF, the member strengths can be similarly designed
FIG. 4. g-COF Curve for Three-Story, Two-Bay Structure

FIG. 3. External Load Corresponding to COF

FIG. 2. Four Most Likely Failure Modes of Three-Story,
Two-Bay Structure

proportional to those in Table 1. According to the results of
stochastic limit analysis, the beam-hinging pattern mode first
appears when the value of COF $1.3. The first four likely
failure modes for COF = 1.3 are shown in Fig. 2 along with
their corresponding first-order reliability index—b = 2.000,
b2 = 2.020, b3 = 2.035, and b4 = 2.039. It can be seen from
this figure that the unpreferable failure modes (corresponding
to b2, b3, and b4) are only slightly different from the beam-
hinging pattern (corresponding to b1).

To conduct COF evaluation at the same reliability level, the
external load level was adjusted to ensure that the reliability
index corresponding to the most likely failure mode (entire
beam-failure pattern) of the structure kept the same value
JOURNAL OF STRUCTURAL ENGINEERING / MAY 2000 / 607



FIG. 6. g-COF Curve for One-Story, Multibay Structure (b 5 3)

FIG. 5. g-COF Curve for One-Story, Multibay Structure (b 5 2)

when the value of COF was changed. The designed load levels
for the two reliability levels, b = 2 and 3, are depicted in Fig.
3, from which one can see that the load level increases almost
proportionally as COF increases.

If the stochastic limit analysis is conducted on the designed
frame structure with different values of COF, select the first
two most likely failure modes and calculate the probability
ratio g as in (4). Then the two g-COF curves shown in Fig. 4
for b = 2 and 3 can be obtained. From Fig. 4, the target value
of COF corresponding to the tolerance level g0 = 0.8 can be
obtained as 2.83 and 2.33 for b = 2 and 3, respectively. One
can see that the target value of COF for b = 3 is much smaller
than that for b = 2. For the sake of comparison, target values
of COF for g0 = 0.7 were also obtained as 4.61 and 3.44 for
b = 2 and 3, respectively. One can see from this that the target
value of COF is very sensitive to the tolerance level g0.

PROBABILISTIC EVALUATION OF COF

COF Evaluation for One-Story, Multibay Structures

To investigate COF values of one-story structures, the
height-span ratio is taken as H/L = 4 m/8 m = 0.5. The mean
strength of the beams are taken to be 1,062 t cm, and the mean
strength of the columns changed according to changes in COF.
Structures from one to five bays were investigated, and the
g-COF curves for each structure are depicted in Fig. 5 for b
= 2 and in Fig. 6 for b = 3.

From Figs. 5 and 6, one can see that the larger the number
of bays, the more gentle will be the slope of the g-COF curve.
For g0 = 0.8, the target values of COF for b = 2 are obtained
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FIG. 9. g-COF Curve for Multistory, One-Bay Structure (b 5 2)

FIG. 8. g-COF Curve for Multistory, One-Bay Structure (b 5 3)

FIG. 7. g-COF Curve for Multistory, One-Bay Structure (b 5 2)

as 1.37, 1.74, 2.36, 3.32, and 5.07 for one-, two-, three-, four-,
and five-bay structures, respectively; those for b = 3 are ob-
tained as 1.22, 1.49, 1.83, 2.28, and 2.92, respectively. One
can see that the larger the number of bays, the larger the
needed target value of COF.

COF Evaluation for Multistory, One-Bay Structures

To investigate COF values of one-bay structures, the height-
span ratio is taken as H/L = 4 m/8 m = 0.5. The mean strength
of the beam at the top floor is taken to be 1,062 t cm, whereas
those of other floors are taken to be 2,124 t cm. The mean



FIG. 10. g-COF Curve for Multistory, One-Bay Structure
(b 5 3)

FIG. 11. Four Most Likely Failure Modes of Two-Story,
One-Bay Structure (for COF 5 1.1)

FIG. 12. Four Most Likely Failure Modes of Two-Story,
One-Bay Structure (for COF 5 5.0)

FIG. 13. Four Most Likely Failure Modes of Seven-Story,
One-Bay Structure (for COF 5 2.1)

strength of the columns changed according to changes in COF.
Structures from 1 to 10 stories were investigated. For the struc-
tures from one to five stories, the g-COF curves are depicted
in Fig. 7 for b = 2 and in Fig. 8 for b = 3. For the structures
from 6 to 10 stories, the g-COF curves are depicted in Fig. 9
for b = 2 and in Fig. 10 for b = 3.

From Figs. 7 and 8, one can see that, once again, the larger
the number of stories, the more gentle will be the slope of the
g-COF curve. For g0 = 0.8, the target values of COF for b =
2 are obtained as 1.32, 1.57, 1.79, 1.97, and 2.12 for one-,
two-, three-, four-, and five-bay structures, respectively; those
for b = 3 are obtained as 1.23, 1.41, 1.59, 1.75, and 1.91,
respectively. One can see that, once again, the larger the num-
ber of stories, the larger will be the target value of COF. The
change in the target value of COF with increase in the number
FIG. 14. Four Most Likely Failure Modes of Seven-Story,
One-Bay Structure (for COF 5 2.5)

FIG. 15. Four Most Likely Failure Modes of Seven-Story,
One-Bay Structure (for COF 5 2.7)

of stories is much smaller than that with the increase of the
number of bays in the case of one-story, multibay structures.

From Figs. 9 and 10, one can see that there are several
discontinuities in the g-COF curves. Such discontinuities oc-
cur at values of COF where the second most likely failure
mode changes. For two-story, one-bay structures, the four most
likely failure modes for COF = 1.2 and 5.0 are shown in Figs.
11 and 12, respectively. The pattern and order of the two most
likely modes remains unchanged as COF increases. Therefore,
there are no discontinuities in the g-COF curve similar to the
ones shown in Figs. 7 and 8. For seven-story, one-bay struc-
tures, the first four likely failure modes for COF = 2.1 are
shown in Fig. 13, and those for COF = 2.5 and 2.7 are shown
in Figs. 14 and 15, respectively. The beam-hinging pattern
mode appearing as the most likely failure mode for COF is
2.1 or above. The pattern of the second most likely failure
mode changed for the cases COF = 2.5 and 2.7; and when
COF is larger than 2.7, the pattern of the second most likely
failure mode remained unchanged. The change in the second
most likely failure mode for the cases COF = 2.5 and 2.7
causes discontinuity in the g-COF curve at the two points
shown in Fig. 9.

COF Evaluation for Multistory, Multibay Structures

To investigate COF values of multistory, multibay struc-
tures, the height-span ratio is taken as H/L = 4 m/8 m = 0.5.
The mean strength of the beams on the top floor are taken to
be 1,062 t cm, whereas those of other floors were all taken to
be 2,124 t cm. The mean strength of the columns changed
according to changes in COF. Structures from one to seven
stories and from one to five bays were investigated. The com-
putational target values for the tolerance level g0 = 0.8 are
listed in Table 2 for b = 2 and in Table 3 for b = 3, where
Columns 2–6 show the results of target COF values for each
number of bays.

From Tables 2 and 3, one can see that, for a given number
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TABLE 2. Target Values of COF for Multistory, Multibay Struc-
tures (b 5 2, g 5 0.8)

Number of
stories

(1)

One
bay
(2)

Two
bays
(3)

Three
bays
(4)

Four
bays
(5)

Five
bays
(6)

1 1.32 1.74 2.36 3.32 5.07
2 1.57 2.35 3.42 5.05 7.90
3 1.79 2.83 4.27 6.25 9.35
4 1.97 3.21 4.82 7.03 10.36
5 2.12 3.51 5.30 7.68 11.07
6 2.23 3.74 5.67 8.17 11.58
7 2.41 3.98 5.96 8.55 11.86

TABLE 3. Target Values of COF for Multistory, Multibay
Structures (b 5 3, g 5 0.8)

Number of
stories

(1)

One
bay
(2)

Two
bays
(3)

Three
bays
(4)

Four
bays
(5)

Five
bays
(6)

1 1.23 1.49 1.83 2.28 2.92
2 1.41 1.91 2.57 3.42 4.53
3 1.59 2.33 3.22 4.42 5.91
4 1.75 2.68 3.82 5.25 7.06
5 1.91 3.01 4.35 6.03 8.22
6 2.29 3.29 4.82 6.66 9.06
7 2.81 3.56 5.19 7.20 9.83

TABLE 4. Target Values of COF for Multistory, Multibay
Structures (b 5 2, g 5 0.9)

Number of
stories

(1)

One
bay
(2)

Two
bays
(3)

Three
bays
(4)

Four
bays
(5)

Five
bays
(6)

1 1.20 1.29 1.48 1.67 1.92
2 1.24 1.53 1.86 2.24 2.67
3 1.36 1.73 2.17 2.67 3.20
4 1.52 1.90 2.44 3.05 3.70
5 1.69 2.03 2.64 3.33 4.07
6 1.94 2.14 2.80 3.54 4.34
7 2.19 2.26 2.95 3.73 4.60

TABLE 5. Target Values of COF for Multistory, Multibay
Structures (b 5 3, g 5 0.9)

Number of
stories

(1)

One
bay
(2)

Two
bays
(3)

Three
bays
(4)

Four
bays
(5)

Five
bays
(6)

1 1.10 1.20 1.33 1.45 1.58
2 1.18 1.38 1.60 1.87 2.12
3 1.26 1.56 1.86 2.20 2.60
4 1.34 1.70 2.10 2.55 3.06
5 1.40 1.85 2.32 2.86 3.39
6 1.56 1.97 2.50 3.13 3.79
7 1.69 2.08 2.73 3.39 4.09

of stories, the larger the number of bays, the larger will be the
target value of COF. For a given number of bays, the larger
the number of stories, the larger will be the target value of
COF. One can also see that the target value of COF is more
sensitive to the number of bays than to the number of stories.

The computational target values for the tolerance level g0 =
0.9 are listed in Table 4 for b = 2 and in Table 5 for b = 3,
where Columns 2–6 show the results of target COF values for
each number of bays. From Tables 4 and 5, one can see that
target values for the tolerance level g0 = 0.9 are much smaller
than those for the tolerance level g0 = 0.8.

CONCLUSIONS

A stochastic limit analysis procedure was developed, and
the target value of COF that ensures frame structures collapse
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according to the beam-failure pattern was discussed in prob-
abilistic terms. It was found that

• To ensure that the frame structures collapse according to
the beam-failure pattern, a considerably larger value of
COF is required in the case where both the loads and the
member strengths are uncertain than in the case of a de-
terministic member strength.

• For a given number of stories, the larger the number of
bays, the larger will be the target value of COF. Moreover,
for a given number of bays, the larger the number of
stories, the larger will be the target value of COF. The
target value of COF is more sensitive to the number of
bays than to the number of stories.

• The higher the reliability level is set when the structure
is designed, the smaller the required target value of COF
to limit the probability ratio to within a given tolerance
level.

• The target value of COF is very sensitive to the tolerance
level g0. For suitable stochastic evaluation of the target
values of COF, it is therefore very important to set an
appropriate tolerance level.

It should be noted that the investigation was conducted un-
der some restrictive assumptions described in the paper. Some
other factors that were not considered in the paper, such as
second-order effects and axial deformation, type of ground
motion and dynamic response, distribution type of random
variables, definition of the beam-hinging pattern, and corre-
lations among member strengths, may be important. To deter-
mine reasonable target COF with consideration of all of these
factors requires further research.
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APPENDIX II. NOTATION

The following symbols are used in this paper:

[E ] = unit matrix;
[H ] = coefficient matrix for equilibrium equation;
Mpb = mean value of ultimate moment of beam;
Mpc = mean value of ultimate moment of column;
{P} = load vector;
pf 1 = occurrence probability of most likely failure mode;
pf 2 = occurrence probability of second most likely failure mode;

{r} = vector of member strength;
g = probability ratio;

g0 = specific allowable level; and
l = load factor.
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