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4P-LAMBDA DISTRIBUTION AND ITS APPLICATIONS TO
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In this paper, the four-parameter (4P) Lambda distribution, whose four parameters can be easily determined using tﬁé'published tables in terms
of the mean value, standard deviation, skewness, and kurtosis of the sample data, is investigated. From the investigation 6Ft1j1is paper, one can
see that this distribution, having characteristics of simplicity, generality, and flexibility, can be applied as a candidate distribution in fitting
statistical data of basic random variables and can be used to represent or approximate the most popular one-, two-, and thfec;parameter
distributions. A fourth-moment reliability index based on this distribution is derived and its application to structural reliability assessment is
discussed. Numerical examples are presented to demonstrate these advantages. )
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1. INTRODUCTION

In structural reliability evaluation, the basic random variables repre-
senting uncertain quantities, such as loads, environmental factors, material
properties, structural dimensions, and variables introduced to account for
modeling and prediction etrors, are assumed to have known cumulative dis-
tribution functions (CDFs) or probability density functions (PDFs). Deter-
mination of the probability distributions of these basic random variables is
essential for the accurate evaluation of the reliability of a structure.

Many methods for determining the probability distributions have been
developed, such as Bayesian approach”, B-spline function”, theoretical
approach”, and others. Usually, the basic method for determining the
required distribution is to fit the histogram of the statistical data of a
variable with a candidate distribution”, and apply statistical goodness-of-fit
tests. Generally, such candidate distribution would have parameters that
may be evaluated from the mean value and standard deviation of the
statistical data. It has been reporteds) that the two-parameter (2P)
distributions may not be appropriate when the skewness of the statistical
data is important and must be reflected in the distribution. Thus, the three-
parameter (3P) distributions”, which can effectively reflect the information
of skewness as well as the mean value and standard deviation of statistical
data, have been suggested as the candidate distribution. However, the 3P
distributions may be not flexible enough to reflect the kurtosis of statistical
data of a random variable, and distributions that can be determined by
effectively using the information of kurtosis as well as the mean value,
standard deviation, and skewness of the statistical data are required.

On the other hand, in structural reliability analysis, for a performance
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function z=G(X), if the first four moments of G(X) are obtained, the
probability of failure P; can be estimated from the relationship between the
CDF of G(X) and its first four central moments. Therefore, it is convenient
to have a distribution whose parameters are determined by its first four
moments.

In this paper, the four-parameter Lambda (4P-Lambda) distribution®,
whose four parameters can be easily determined using the published tables”
in terms of the mean value, standard deviation, skewness, and kurtosis of
the sample data, is investigated. From the investigation of this paper, one
can see that this distribution, having characteristics of simplicity, generality,
and flexibility, can be applied as a candidate distribution in fitting statistical
data of basic random variables and can be used to represent or approximate
the most popular one-, two-, and three-parameter distributions. A fourth-
moment reliability index based on this distribution is derived and its
application to structural reliability assessment is discussed.

2. THE 4P-LAMBDA DISTRIBUTION
2.1 Definition of the Distribution and Moments

The 4P-Lambda distribution is defined by its inverse cumulative distri-
bution function®

z=R(p) =X +[p" (1= p)]/A, (0sps]) (1

in which Ay, Az, A3, and A4 are the four parameters of the distribution, A, is a
location parameter, A; is a scale parameter, andA; and k4 are shape
parameters.

The probability density function corresponding to Eq. 1 is given by
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Fig. 1. The representative standard PDFs for specified a; and oy values

f@)= AAR(P)] = [ ap™ ™ + 2,(1- T, (0= ps1) @

Ramberg and Schmeiser® showed that the kth moment of the above
distribution, when it exists, is given as

Elz) = & +11/(1+ Ae)= Y1+ Ay ()

Hz]= 530 B k- e Lais ), o1 (3b)
where 8 denotes the beta function,

Blg.r)= [ x(1-x)"" dx “@)

The kth moment does not exist when any of the arguments of the beta
function are negative. Thus, the kth moment exists if and only if min (As, k)
>-1/k.

Then, the first four moments, i.e., the mean u, the variance o, the third
moment p,=E(z-u)’, and the fourth moment u=FE(z-u)* of z are obtained as

p=Elz]= A +Al% (5a)

o’ = E[(z-p)*] = (B-A2)/ A (5b)

Hy = E(z- )’ =(C-3AB+24°)[ 2} (5¢)

pa = E(z— )" =(D=4AC + 6A’B-3A%) [ 3} (5d)
where

A=1(1+24)-1/(1+A) (5¢)

B=1/(1+24)+ 1/(1+24) -2(1 + 25,1+ A,) (59

C=1{1+34)-3B(1+ 24,1+ A )+ 3B(1+ A, 1+ 24)- 1/(1+ 34)  (58)
D= (14 44) - 4B(1+ 32,1+ A )+ 65(1+ 225, 1+ 24 )
4801+ A, 1+34)+1/(1+44,) (5h)

The third dimensionless moment @, i.¢., the skewness and the fourth
dimensionless moment @, i.e., the kurtosis are given by

az‘ﬂ3/03 (51)

oy = fot (5
Apparently, the skewness and kurtosis are functions of A; and A, but do
not depend upon A, and A,.
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2.2 Parameter Estimation

Several methods for estimating the parameters of the 4P-Lambda
distribution have been proposed. These include the moment matching
method® ?, least squares method®, starship method” and randomized restart
method'”. However, all the methods for directly estimating the parameters
are complicated. Fortunately, the published tables”, which are based on Eq.
5 facilitating parameter estimation using the first four sample moments, are
available and convenient. In the present paper, we will use the published
tables to estimate the parameters with the first four sample moments. For
convenience, a part of the published tables are provided in Appendix A.

The values of A, ks, As, and Ay are given in the published tables for
selected values of a; and a; with u=0 and e=I. If the valves of u, o, o,
and a, are known, the lambda values are determined from the published
tables using the ayand ey values as entry points, One simply picks the
values of ks and A.for which the o and a4 are closest to the desired values.
If a5 is negative, one uses: its absolute value, and after finding the values of
A3 and Ay, interchanges their values and changes the sign of A,. (The density
with a skewness of - is the mirror image of that with a skewness of a.)

Since the A; and A; valwes: given in the published tables are for a variate
with 4 =0 and o=1, multiplying the resulting variate by & and adding u to

it achieves the desired result. This reduces to computing
Alpo)=40,1)0 +p (6a)
A(poy=4(00)/c (6b)

2.3 Representative PDFs of the Distribution

Once the four parameters are determined, the probability density curves
can be plotted with aid of Eqs. 1 & 2 for values of p ranging from zero to
one. That is, f{R(p)] is plotted on the y-axis versus R(p) on the x-axis.

The representative PDFs. of this distribution meludes a wide range of
curve shapes as illustrated: by the standard’ density plots in Fig. 1. One can
see that the PDFs reflect the skewness and kurtosis: quite well. And one can
also see that the left tail of PDF is long for negative o5 and the right tail is
long for positive a3. This characteristic is especially important when the
fourth-moment reliability index based on this distribution is used in
structural reliability assessment as described later. Especially, when e=0
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Fig. 2. Operable area of 4P-Lambda distribution

and a4=3, the distribution results in an approximation to the standard
normal distribution for which max|®(z,)-R"(z,)|=.001, where ®(z,) is the
standard normal distribution function. The PDFs of the two distributions
are also shown in Fig. la. One can clearly see that the 4P-Lambda
distribution approximately approaches the normal distribution. Schmeiser'”
has shown that the limiting distribution of this distribution is exponential
with parameter 8as A,—0 when A;= A;= 0 and A= A/6.

2.4 Operable Area of the Distribution in the o;’-c, Plane

As described previously, the values of parameters obtained using the
published tables are based on Eq. 5. For a specified value of a3, when the
values of oy are below a limit value, the Eq. 5 will become inoperable.
Using the limit value of a, for which Eq. 5 is inoperable corresponding to
the selected o3, a lower boundary line in the o3’-a, plane can be depicted as
shown in Fig. 2, in which the operable area of the distribution is indicated
by the shade region. The lower boundary line for which Eq. 5 is operable is
found to be nearly a straight line approximately expressed by

oy =1.8+1.7a}

(N

In Fig. 2, the limit for all distributions'” expressed as au=ct>+1 is also
depicted along with o’-a relationship for some commonly used distri-
butions, i.e., the normal, Gumbel, and the exponential distribution, which
are represented by a single point, the lognormal, the Gamma, and the
Weibull distributions, which are represented by a line. One can see that the
operable area of the 4P-Lambda distribution covers a large area in the a5’-
a plane, and the o™~ a relationship for most commonly used distributions
are in the operable area of this distribution. This implies that the 4P-
Lambda distribution is generally operable for common engineering use.

3. APPLICATION TO DATA ANALYSIS
3.1 Statistical Data Fitting

In order to investigate the efficiency of the 4P-Lambda distribution in
fitting statistical data of a random variable, the following two examples use
the practical data of H-shape structural steel collected by Ono et.al'”. The
fitting results of the histogram of the ratio between measured values and
nominal values of the thickness are shown in Fig. 3, in which the number of
data is 885 and the first-four moments of the data are obtained as p=0.986,
=0.0457, a:=0.883, and «=5.991. In Fig.3, the PDFs of the normal and
lognormal distributions, with the same mean value and standard deviation
as the data, the PDF of the 3P-Gamma distribution whose mean value,
standard deviation, and skewness are equal to those of the data, and the
PDF of the 4P-Lambda distribution whose mean value, standard deviation,
skewness, and kurtosis are equal to those of the data, are depicted. Fig. 3
reveals the following:

Fig. 3. Data Fitting for Thickness

Thickness{measured/nominal) Ultimate Stress

Fig. 4. Data Fitting for Ultimate Stress

(1) The PDFs of the normal distribution and lognormal distribution have the
greatest differences from the histogram of the statistical data among the four
distributions. Since the normal distribution is a symmetrical distribution
with the skewness=0.0 and the kurtosis=3.0, respectively, it obviously
cannot be used to fit the histogram that has such a large skewness (0.883)
and kurtosis (5.991), respectively. Although the lognormal distribution can
reflect skewness and kurtosis in some degree, the skewness and kurtosis of
the lognormal distribution are dependent on the coefficient of variation.
Since the coefficient of variation for this example is very small (0.0463),
the skewness and kurtosis of lognormal distribution corresponding to this
coefficient of variation are too small (a5= 0.139, a,=3.034) to match those
of the data,
(2) Since the first three moments of the 3P Gamma distribution are equal to
those of the data, it fits the histogram much better than the normal and
lognormal distributions. However, the kurtosis of this distribution is
depending on the skewness. The kurtosis corresponding the skewness of the
data is obtained as 4.17, which is too small to match that of the data,
(3) The first four moments of the 4P-Lambda distribution can be equal to
those of the data, and thus can fit the histogram much better than the normal,
lognormal, and 3P-Gamma distributions.

Results of the Chi-square tests of the four distributions are listed in Table
1, in which the goodness-of-fit tests were obtained using the following
equation®

k
T=3(0; ‘E:')Z/Et

i=l

®

where O;and E; are the observed and theoretical frequencies, respectively, &
is the number of intervals used, and T is a measure of the respective
goodness-of- fit. From Table 1, one can see that the results of goodness-of-
fit test of the introduced distribution is 7=29.1 which is much smaller than
those of other distributions.

Similarly, the fitting results of the histogram of the ultimate stress are
shown in Fig. 4, in which the number of data is 1932 and the first-four
moments of the data are obtained as p=4.549, o=0317, ;=0.153, and
a~6.037. From Fig. 4, one can see that since the skewness of the data is
quite small, the 3P-Gamma distribution cannot show significant improve-
ment upon the normal and lognormal distributions, whereas the 4P- Lambda
can effectively fit the histograms of the available data. Also, from Table 2,
the results of goodness-of-fit test verify that the introduced distribution has
the best fit with 7=19.34 among all the distributions.

From the above examples, one can clearly see that since the first four
moments of the 4P-Lambda distribution are equal to those of the statistical
data, it fits the histogram much better than the normal, the lognormal, and
the 3P-Gamma distribution. This is to say, the 4P-Lambda distribution is
more suitable for fitting statistical data.
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Table 1. Results of test for thickness thin solid lines; in these same figures the respective 4P-Lambda distribution
ot " 5 Goodn it with the same first four moments as those of the corresponding one-, two-
S S b and three-parameter distributions, are depicted as thick dash lines. In these
Normal Lognammal JP-Gamma  Peesent figures, all the two- and three-parameter distributions are shown with the
<0.92 54 212 1.1 16.86 435 mean values of p=25, 30, 35, and 40, and coefficients of variation F=0.1,
0.92-0.94 39 15.98 18.23 34.76 12.30 02,03, and 0.4.
0.94-0.96 145 9.06 6.23 0.42 0.45 Fig. 5 shows that the thick dash lines coincide closely with the thin solid
036078 o 2638 Z 942 218 lines, demonstrating the flexibility of the 4P-Lambda distribution for repre-
0.98-1.00 170 1.96 2.16 420 0.00 senting one-, two-, and three-parameter distributions. This flexibility can be
: ggniooi 16015 l6324(:3 :;7905 (2):1;2 izﬁ useful in the structural reliability analysis as described below.
1.04-1.06 37 7.84 6.67 2.09 0.41
1.06-1.08 35 1.24 L1 186 615 4. APPLICATION TO STRUCTURAL RELIABILITY ASSESSMENT
J ')1 oé i i 3 5 7' e 0‘ e 0'23 4.1 The Fourth-Moment Reliability Index
Sulm 385 97l7 A 81- o4 72‘ 26 2;} ] For a performance function z=G(X), if the first four moments of G(X) are
: : : : obtained, the probability of failure, P(G=0), can be estimated by assuming
. G(X) obeys the 4P-Lambda distribution,
Table 2. Results of test for ultimate stress Foribestidtlzsl madomvaiinbing,
Intervals Fregency Goodness of fit 7, =(z- pe)fo¢ 9)
Normal Lognormal 3P-Gamma Present singe
A R S L M AR R
42-44 365 0.29 0.43 0.12 0.76 where ug and oy are the mean value and standard deviation of z=G(X),
44-46 638 57.72 51.70 53.63 6.56 respectively, fav is the 2nd-moment (2M) reliability index, and Pris the
4.6-4.8 424 0.05 0.42 0.18 2.79 probability of failure.
4.8-5.0 193 19.28 12.04 13.90 1.47 According to Eq. 1 and Eq. 9, the standard form of the 4P-Lambda distri-
5.0-5.2 82 7.53 6.86 7.17 0.10 bution defined by its inverse cumulative distribution function can be
>5.2 58 9.75 1.78 3.07 1.35 expressed as
Sum 1932 127.64 108.6 112.62 19.34

3.2 Approximation for One-, Two-, and Three-Parameter Distributions
The 4P-Lambda distribution, as defined in Eq. 1, can be used to represent
or approximate one-, two-, and three-parameter distributions by equating
the respective first four moments. This is illustrated with the one-parameter
exponential distribution, two-parameter distributions including normal,
lognormal, Gamma, Weibull distributions, and three-parameter Gamma

distribution. Fig. 5 shows the PDFs of the above distributions depicted as

2o = Rs(p) = A(O,)+[ p* - (1- pY™ ]/ A(0,1) (1
The fourth-moment (4M) reliability index based on the 4P-Lambda

distribution can be given as
Bas =~ [R5' (~Bau)] (122)
Pp=D(-fyu) (12b)
where [y is the fourth-moment (4M) reliability index, and ¢ is the CDF
of a standard normal random variable. Although Eq. 12 is not in explicit

form, it can be computed easily using the published tables.



As described earlier, the left tail of PDF is long for negative a6 and the
right tail is long for positive as. Since the failure probability is integrated
in left tail according to Eq. 10, it is easy to understand that the fourth
moment method is more suitable for negative @ than positive og. It may
be an interesting thing that for most structural reliability assessment
problem, the skewness of the performance function is negative as shown in
the later examples.

4.2 Computation of the Moments of the Performance Function G(X)

In order to conduct structural reliability analysis using the fourth-moment
reliability index, one should firstly compute the moments of the perfor-
mance function.

A common encountered performance function in structural reliability is a

linear sum of independent random variables in the original space:
G(X) = % ax, (13)
i=1

where x;, i=1, ..., » are mutually independent random variables and a;,
i=l, ..., n are coefficients.

The first four moments of Eq. 13 are as follows

He = éa,ﬂi (14a)

ad= glafa,? (14b)

0304 = l_ila;,a?o? (14¢)

Q08 = ﬁ]aﬁa?af +6r_§j i'afaﬁafaf- (14d)
in iel jai

where p (Ug),0: (05), e (as;), and o (@ug) are the mean value, standard
deviation, skewness, and kurtosis of x; (G(X)), respectively.
Another common encountered function in structural reliability is the

product of independent random variables in the original space:

G(X) - iﬁ]x} (15)
The first four moments of Eq. 15 are given as

Mo = q M (16a)
ol = yé[}"-[l(lwf)—l] (16b)
am=[ﬁ aafvf+3\42+1)-3ﬁ(1+vi2)+2]/vg (16¢)

i=1
Qg = fll(a4i‘/f4 +doy, V7 +6V +1)
-4_f-'xlmzjfvf+3v,.2+1)+6_1"1I(1+V,-2)-3]/VG4 (16d)
i i

where V;, Vg are the coefficients of variation of x; and G(X) respectively.

For complicated and implicit performance functions including those
corresponding to correlative random variables, point estimates'? method
will be used for moment computation.

4.3 Numerical Examples
In order to investigate the efficiency of the suggested fourth-moment
reliability index, several examples are examined under different conditions.

Example 1.

Consider the following performance function of a simple structural
column

G(X)=Ax,;xy — X3 (17)
where A is the nominal section area, x; is a random variable representing the
uncertainty of A4, x, is the yield stress, and x; is the compressive stress.
Assume the column has an H-shape and is made of structural steel with a
H300x 200" section and having an area A=7238cm*, and a material of
§541'”. The CDFs of x; and x; are unknown, the only information about

them are their first four moments', ie., 1,=0.990, 6:=0.051, ct;,=0.709,
0=3.692, 11=3.055t/cm®, 0:=0.364, cu;= 0.512, and an= 3.957. x; is
assumed as a lognormal variable with mean value p;=100¢ and standard
deviation g;=40z.

The skewnees and kurtosis of x; can be soon obtained as ca3=1.264,
;3=5.969. Since the first four moments of x,, x,, and x; are known, using
Eqs.14 &16, the first four moments of G(X) can be easily obtained as
u=118.910, 05=49.085, aic=-0.578, and cu—~4.41. The 2ZM reliability
index is readily obtained as Bas=2.423. Using the suggested formula in the
present paper, the 4M reliability index is readily obtained as $,=2.074. The
corresponding probability of failure is equal to 0.01905.

Using Eq. 1, the random sampling of x, and x; can be easily generated
without using their CDFs and Monte-Carlo Simulation (MCS) can be thus
easily conducted. The probability of failure of this performance function is
obtained as Py= 0.0188 and the corresponding reliability index is equal to
2.079 when the number of samplings is taken to be 10,000. One can see the
4M method is in close agreement with the MCS result.

Example 2.

The second example is an elastoplastic frame structure with six stories
and three bays as shown in Fig. 6, with the probabilistic member strength
and load listed in Table 3. The most likely failure model of this structure is
also shown in Fig. 6. The corresponding performance function is

G(X)=2M, +2M 4 +2M; +2M o+ 2M, + My + M s

-3.85,-7.65;-11.45, —-15.25; - 195, (18)

Because all of the random variables in the function above have a known
PDF (CDF), the reliability index can be readily obtained using First-Order
Reliability Method (FORM). The FORM reliability index is g =3.100,
which corresponds to a failure probability of Pr= 0.000568.

The skewness and kurtosis of the variables of member strength and load
are also listed in Table 3. With aid of Eq. 14, the mean value, standard
deviation, skewness, and kurtosis of G(X) are readily obtained as ug
=619, 0 =154.285, o1¢=-0.694, and as;=4.084. The 2M reliability index
is readily obtained as f~4.012. Using the suggested formula in the present
paper, the 4M reliability index is readily obtained as Bu—=2.976. The
corresponding probability of failure is equal to 0.00146.

Using MCS with 500,000 samples, the probability of failure for this
performance function is obtained as 0.001598 with corresponding reliability
index of B=2.948. One can see that the probability of failure obtained using
the proposed method is closer to the result of MCS than that of FORM for
this example.

Table 3. Random Variables in Example 2

Variables (independ- Mean Coefficientof  Skewness Kurtosis
ent and Lognormal) variation

M, My, My, Mys, Mg 90.8t-m 0.1 0.301 3.1615
My, My, M, Mg 145.2t-m 0.1 0.301 3.1615
Ma, My, My, My 145.2t-m 0.1 0.301 3.1615
Mo, My, My 103.4t-m 0.1 0.301 3.1615
My, Mz, Mis 162.8t-m 0.1 0.301 3.1615
Ms, My, Mo 162.8t-m 0.1 0.301 3.1615
S 2.5t 04 1.264 5.969
82 5.0t 04 1.264 5.969
S 7.5t 0.4 1.264 5.969
Sa 10.0t 04 1.264 5.969
Ss 12.5¢ 0.4 1.264 5.969
S5 15.0t 0.4 1.264 5.969
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Fig. 7. Brittle Chain System

Example 3.

Considers a parallel-chain system as shown in Fig. 7. Assume that the
individual components of the structural system will fail through fracture,
and thus it is a brittle system (non-series).

There are two failure modes of the parallel-chain system shown in Fig. 7

with respective performance functions listed in Eq. 19.

&s=R-3 (19a)
g2 = max{min(R;,R;,R, )~ §/2,max[(min(R;,R;),Rs1- S} (19b)

The performance function of the system can be defined as the minimum
of the above; i.e.,

G(X) = min{g,.8} (19¢)
where the facture strengths R, and load § are independent lognormal
random variables with means and standard deviations of pug=2200kg,
Hre=2100 kg, ps=2300 kg, uz=2000 kg, us=1200 kg, 021=220 kg, 0x=210
kg, 0r=230 kg, 0r=20 kg, and o=240 kg.

Using the point estimates method'?, the first four moments of G(X) are
approximately as g=993.360, o =316.836, a;=-0.275, and a4:=3.109.
The second moment reliability index are easily obtained as f,~=3.135.
Using the presented formula in the present paper, the 4M reliability index is
readily obtained as f£4,,~2.872. The probability of failure corresponding to
the 4M reliability index is equal to 2.04x107,

Using MCS with 500,000 samples, the probability of failure for this
system is obtained as 2.506x10” with corresponding reliability index of
£=2.806. One can see that the result of the proposed method is in close
agreement with the MCS result, whereas the second-moment approximation
is significantly in error.

5. CONCLUSIONS

The 4P-Lambda distribution is investigated, and its applications are
emphasized including statistical data analysis and structural reliability
assessment. It is found that

(1) The 4P-Lambda distribution has a single expression, and the four
parameters can be easily determined with the first four central moments
using the published tables.

(2) The 4P-Lambda distribution is generally operable for common
engingering use.

(3) With four parameters, the 4P-Lambda distribution has more flexibility
for fitting statistical data of basic random variables, and can more
effectively fit the histograms of available data than two-parameter or
three-parameter distributions.

(4) The 4P-Lambda distribution can be used to represent or approximate
some popular distributions, such as one-parameter expenential distri-
bution, two-parameter distributions including normal, lognormal,
Gamma, Weibull distributions, and three-parameter Gamma distribution
and so on.

(5) For some performance functions, if the first four moments are obtained,
the 4P-Lambda distributions can be conveniently applied to obtain a
moment-based reliability index.

(6) The structural reliability evaluation can be conducted with aid of the
suggested 4M reliability index even when the CDFs or PDFs of the
basic random variables are unknown.

It should be noted that compared to the determination of mean value and
standard deviation, more sample data is required to determine the values of
high order moments. Since the first four moments have clear physical
meanings, the 4P-Lambda distribution is investigated in this paper. Further
study is required to understand the relationship between the accuracy of
high order moment and sample size.
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Appendix A Lambda parameters for given values of skewness () and kurtosis (ay) when p=0 and o=1.

The table listed here is a part of the table constructed by Ramberg et.al”. The parameter values given in this table are for a variate with u=0 and o=1. The
procedure for adjusting the parameters to reflect a different mean or variance is given in Section 2.2. A plus sign (+) next to a tabled value indicates that the
value has two leading zeroes and should be multiplied by 107, Similarly, a dollar sign($) next to a tabled value indicates that the should be multiplied by 10"

o=0.00 05=0.10 a;=0.20 ;=030
Oy Ay Ay 2a Ay ay A A A Aq oy Ay A A Ay a4 Ay Ay A Ay
28 0 2433 1765 1765 3.0 -117 1977 1205 .1503 30 -237 1983  .1065 1672 3.0 -362 1991 0925 1859
30 0 1974 1349 1349 32 -092 1572 0936 111 32 -.187 1599 .0866 1230 32 -288 1641 0796 1377
32 .0 1563 .1016 1016 34 -076 1203 .0698 0803 34 -154 1240 0677 .0889 34 -239 1298 0640 1003
34 0 1191 .0742 0742 36 -065 .0B66 .0490 0552 36 -132 0908 0482 0615 36 -204 0973 0481 0704
36 .0 0852 0512 0512 38 -.057 0558 .0308 0342 38 -1l6 0601 0314 0389 38 -179 .0671 0330 0460
38 0 .0545 0317 .0317 40 -049 0276 0149 .0163 4.0 -103 0318 0164 0198 40 -160 0389 0190 0255
40 0 0262 0148 0148 41 -048 0142 7606+ .B302+ 41 -097 0185 9467+ 0113 42  -144 0127 6175+  .BO3S+
41 0 0128 7140+ 7140+ 42 -046 1440+ 0762+ 0828+ 42 093 5707+ 2894+ 3429+ 43 -13%8 0789+ 0380+ .0489+
42 .0 -0659+ -0363+ -.0363+ 43 -044 -0109 -5703+ -.6174+ 43  -089 -.6641+ -3342+ -3929+ 44 -131 -0116 -5554+ -7057+
43 .0 -0123 -6706+ -.6706+ 44  -041 -0227 -0118 -0127 44  -085 -0185 -9261+ -0108 45 -129 -0231 -0l110 -0139
44 0 -0241 -0130  -0130 46 -037 -.0452 -.0231 -.0247 46 -079 -0410 -0202 -.0233 46 -121 -0343 -0163 -.0203
46 0 -0D466 -0246  -.0246 48 -036 -0661 -0332 -0354 48 -074 -0622 -0302 -0345 48 -113 -0554 -0260 -.0319
48 .0 -0676 -0350 -.0350 50 -.033 -0857 -0424 0450 50 -069 -0818 -0392 -0444 50 -105 -0752 -0350 -0423
50 .0 -.0870 -0443  -0443 52 -032 -1040 -0507 -.0537 52  -065 -1003 -0475 -.0534 52  -100 -0939 -0432 -0517
52 0 -l053 -0528  -.0528 54 -030 -1213 -0584 -.0616 54  -061 -1176 -0551 -0615 54  -094 -1114 -0508  -.0601
54 0 -1277 -0606  -.0606 5.6 -.028 -1375 -0654 -0688 56 -058 -1339 -0621 -0689 56 -0B9 -1279 -0578 -0678
56 .0 -.1389 -0677  -.0677 58 -027 -1530 -.0719 -0755 58 -055 -1494 -0686 -0757 58 -085 -1435 -0643 -0748
58 0 -1541 -0742  -.0742 6.0 -027 -1674 -0778 -.0816 60 -053 -1639 -0745 -0819 60 -081 -1582 -0703 -0812
60 0 -1686 -0802  -.0802 62 -025 -1811 -0834 -0872 62 -051 -1778 -0801 -0877 62 -078 -1722 -075% -0872
ay=0.40 @,=0.50 a:=0.60 =070
oy A Ay A Ay @y A Az A Ay oy A Az Az Ay oy A A A3 As
3.0 494 2000 0782 2069 34  -440 1454 0566  .1332 34 -562 1539 0504 1554 36 -606 1385 0409 1406
32 -400 1690 0718 .1555 3.6 -376 1163 0476 0979 3.6 -482 1273 0454 1171 38 -529  .1139 0369 .1060
34 -333 1371 0609 1149 38 -329 0877 0369  .0689 38 -420 1005 0379 0854 4.0 -467 0889 .0307 0768
36 -284 1060 0482 0824 40 -29 0604 0259  .0477 40 -372  .0740 0289 .0589 42 -419 0643 0232 0522
38 -248 0764 0351 0558 42 -262 0345 0149 0243 42 -335 0486 0194 0366 44  -379 0406 0151 0312
40 -222 0485 0223 0337 43  -248 0221 9582+ 0152 44 -302 0244 9911+ 0175 46 -344 0178 6767+ 0130
42 -200 0224 0103 .0149 44 -238 0101 -4383+ 6815+ 45 -289 0128 5215+ 8965+ 47 =331 6799+ 2607+ 4872+
43 -190 0100 4597+ 6521+ 45 -228 -1612+ -0700+ -.1066+ 46 -277 1492+ 0611+ 1025+ 48 =317 -3917+ -1512+ -2750+
44 -182 -0397+ -0182+ -0254+ 46 -219 -0128 -5570+ -.8334+ 4.7  -266 -9531+ -3916+ -.6425+ 49 -305 -0144 -5574+ -9893+
45 -174 -0136 -.6204+ -B533+ 48 -202 -0344 -0149 -0216 48 -256 -0202 -8326+ -.0134 50 -294  -0245 -9565+ -.0166
46 -166 -.0248 -0113  -0153 50 -188 -.0546 -0236 -.0333 50 -238 -0407 -0168 -.0261 52 -276 -0441 -0173  -.0289
48 -155 -0462 -.0209 -.0277 52  -177 -0737 -0317 -0438 52 -222 -0600 -0248 -.0373 54 -257 -0626 -.0247 -.0398
50 -.146 -0662 -0297 -0387 54 -167 -0917 -0393 -0532 54 -209 -0782 -0323 -0474 56 -243  -0802 -0317 -0496
52 -136 -0850 -0379 -.0485 56 -.157 -.1087 -0464 -.0617 56 -197 -0956 -0394 -0365 58 -229 0967 -0383 -0584
54 -129 -1027 -0455 -0574 58 -150 -1246 -0529 -.0694 58 -I187 -1118 -0460 -0647 60 -219  -1125 -0445 -0665
56 -122 -1194  -0525 -.0654 6.0 -.142 -1398 -0591 -0764 60 -179 -1273 -0522 -0722 62 -209 -1275 -0504 -0738
58 -115 -1352  -0591 -0727 62 -137 -1542 -0648 -0829 62 -171 -1419 -0580 -0790 64 -199 -1417 -.0560 -.0805
60 -1l -1501 -0651 -0794 64 -131 -1679 -0702 -0889 64 -163 -1559 -0635 -.0853 66 -191 -1554 -0613 -0867
«y=0.80 a;=0.50 a;=1.00 a;=1.10
oy A A A A oy A A As A oy Ay Ay A Ay oy A A As A
36 -754 1492 0333 .1691 40 -717 1193 0269 1258 40 -88  .1333 0193 1588 44 -369 1117 0157 1267
38  -657 122 0333 1310 42 -639 0979 0251 0953 42  -787 1142 0212 1244 46 -781 0932 0165 0977
40 -582 .1042 0303 0989 44  -575 0762 0214 0693 44  -T706 0943 0206 0950 48 -708 0743 0154 0727
42  -519  .0810 0254 0716 46 -522 0547 0164 0468 46 -638 0741 0182 0697 50 -647 0552 0128 0508
44  -468 0580 0192 .0482 48 -478 0337 .0M6 0273 48 581 0539 0144 0477 52 -596 0365 9168+ 0318
46 -425 0357 0123 0281 50 -439 0132 4328+ 0102 50 -533 0340 9695+ 0285 54 -552 0181 483%+ 0150
48 -392 0142 5035+ 0107 5.1 -422 3339+ 1111+ 2526+ 52 -492 0146 4383+ 0117 5.5 =532 9038+ 2484+ 7342+
49 -375 3770+ 1352+ 2770+ 52 -407 -6388+ -2154+ -4735+ 53 -474 5192+ 1584+ 4061+ 567 -517 0997+ 027% 0795+
50 -361 -6291+ -2278+ -4531+ 53 -394 -0159 5428+ -.0116 54 -445 -0317+ -0101+ -.0242+ 5.7 -497 -8629+ -2479+ -.6726+
5.1 -349  -0164 -5981+ -.0116 54 -379 -0252 -B69%4+ -.0180 55 -442 -0132 -4176+ -9946+ 58 -481 -0173  -5046+ -.0132
52 -335  -0261 -9598+ -0181 5.6 -353 -0432  -.0152 -0298 56 -42¢ -0222 7097+ -.0164 60 -451 -.0340 -0103 -.0251
54 -313  -0449 -0167 -.0301 58 -334 -0605 -.0215 -0405 58 -403 -.0395 -0129 -.0282 62 -427 -0501 -0155 -.0358
56 -295 -0626 -.0235 -0408 60 -317 -0768 -.0275 -.0500 60 -379 -0562 -0187 -.0388 64 -403 -0656 -0208 -.0455
58 -279 -0795 -0300 -.0504 62 301 -0924 -.0334 -0587 62 -358 -0721 -.0244 -0484 6.6 -384 -0805 -.0259 -0544
60 -264 -0958 -0363 -0592 64 287 -1073 -03% -.0666 64 -341 -0873 -0299 -0571 68 -366 -0947 -0309 -.0624
62 -251 -1110 -0422  -.0671 66 -273 -1215 -0444  -0738 6.6 -325 -1019 -0352 -0651 7.0 -350 -1084 -0358 -0698
64 -240 -1255 -0478 -.0743 68 -262 -.1352 -0495 -.0805 68 -309 -1158 -0404 -0723 72 -335 -1214  -0405  -.0766
6.6 -230 -1394 -0531 -.0810 7.0 -252 -1481 -0544 -0866 7.0 -297 -1291 -0453 -.079%0 74  -322 -1341 -0451 -0829
a;=120 ;=1.30 a;=1.40 o;=1.50
oy Ay Az A Ay oy Ay A A A ay A A A Ay oy A A Ay A
50 -792 0764 0124 0784 5.6 -749 0466 7959+ 0447 60 -782 0379 5603+ .0365 6.0 -957 0622 397+ 0677
52 -723 0586 0112 0565 58 -.695 0300 5783+ 0273 62 -729 0222 3785+ .0204 62 -885 0471 4441+ 0483
54 -668 0408 8705+ 0372 60 -604 0286+ .6619%  .023%+ 63 -706 .0145 2611+ .0130 64 -84 0321 3885+ .0313
56 -619 0233 5411+ 0202 6.1 -617 0446+ 010+ 0375+ 64 -683  .6B22+ 1292+ 5987+ 6.6 -688 0566+ .0104+ .0494+
57 -597 0146 3525+ 0124 62 -616 -0526+ -.0118+ -0442+ 6.5 -.660 -1226+ -0244+ -1052+ 6.7 -747 9962+ 1538+ 905%+
58 -577 6088+ 1515+ 5050+ 63 -589 -0104 -2450+ -.8504+ 6.6 -643 -8266+ -.1702+ -.6968+ 68 -714 -0290+ -.4897§% -.0256+
59 -558 -2319+ -0594+ -.1884+ 64 -572 -.0182 -4399+ -0l46 6.8 -607 -0230 -0560+ -.0187 69 -704 -4446+ -0768+ -3882+
60 -562 -0962+ -0245+ -.0784+ 6.6 -539 -0333  -8469+ -0258 70 -575 -0373 -8670+ -.0293 7.0 -684 -0115 -2088+ -9875+
62 -508 -0268 -7343+ -.0206 6.8 -510 -0480 -0127 -0360 72 -547 -0510 -0124 -0389 7.2 647 -0254 -498%+ -0210
64 -481 -0424 -0120 -.0315 7.0 -485 -0622 -0170 -.0453 74 -521 -0645 -0163 -0478 74 -615 -0390 -8156+ -0312
6.6 -454 -0575 -0168 -0414 72 -463 -0758 -0213 -0538 76 -498 -0775 -0202 -.0559 7.6 -585 -0520 -0115 -0404
68 -432 -0719 -0215 -0504 74  -442 -0890 -0256 -0616 78 475 -0900 -.0242 -0633 7.8 -558 -.0648 -DI150  -.0489
7.0 -412 -0860 -0262 -.0587 7.6 -424 -1017 -0298 -0688 80 -458 -1020 -0280 -.0702 80 -536 -0767 -0184 -0565
7.2 -394 -0993 -0308 -0662 7.8 -407 -1140 -0340 -0754 82 -440 -1137 -0319 -0766 82 -514 -0891 -.0221 -.0640
74 -378 -1123 -0353 -0732 80 -392 -1258 -0380 -.0816 84 -423 -1250 -0357 -.0825 84 -494 -1007 -.0257 -.0707
7.6 -362 -1247 -0397 -.0796 82 -378 -1372 -0420 -.0873 86 -410 -.1358 -0393 -.0881 8.6 -476 -1118 -0292 -0769
78 -349 -1366 -0439 -.0856 84 -365 -1480 -0458 -.0926 88 -395 -1463 -0430 -.0932 88 -459 -1225 -.0327 -0826
80 -337 -1480 -0480 -.0911 8.6 -353 -.1584 -0495 -0975 9.0 -383 -1564 -0465 -.0980 90 -443 -1330 -.0362 -0880
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