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Introduction
In Monte-Carlo Simulation (MCS) of structural reli-

ability, the basic random variables which represent un-
certain quantities, such as loads, environmental factors,
material properties, and structural dimensions are gen-
erally assumed to have a known cumulative distribution
function (CDF) or probability density function (PDF),
and the generation of random numbers of these random
variables is generally conducted based on the CDF of
the random variables. In reality however, the PDF/CDF
of some basic random variables are often unknown and
the probabilistic characteristics of these variables are
often expressed using  statistical moments only. Under
such a condition, the MCS cannot be applied and a
strict evaluation of the probability of failure is not pos-
sible. Thus, an alternative measure is required.

In the present study, in order to include the random
variables with unknown CDFs into MCS, an inverse
normal transformation is suggested. The random vari-
ables with an unknown CDF are expressed as a simple
function of a standard normal random variable, and the
function is determined using the first few statistical
moments which are generally available from the statis-
tical data of the random variables. Using the proposed
method, the random numbers of random variables with

an unknown CDF can be easily generated utilizing
those of a standard normal random variable, which is
generally considered to be quite easily generated.

Some examples are presented from which the effi-
ciency of the method is investigated. It is found that al-
though the method is quite simple, it is accurate enough
to include the random variables with unknown CDF in
the MCS for structural reliability.

Brief Reviews
If a random variable x has a known CDF F, then, the

random numbers of x used in MCS are generally gener-
ated using the following equation:

              x = F– 1 Φ(u)                                                 (1)

where F is the CDF of x, and Φ is the CDF of a standard
normal random variable u.

Eq. 1 is known as the inverse Rosenblatt transforma-
tion, here after it is simply referred as to u-x transforma-
tion. If F is known, the random numbers of x can be
easily generated using those of u. In reality however,
due to the lack of statistical data, the CDF of some basic
random variables are often unknown and the probabi-
listic characteristics of these variables are often ex-
pressed using statistical moments only. Under such a
condition, the MCS cannot be applied.

When the CDF of a random variable is unknown, an
approach based on the Bayesian notion can be used
(Der Kiureghian & Liu 1986; Der Kiureghian 1989) , in
which the distribution is assumed to be a weighed aver-
age of all candidate distributions. In this type of model-
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ing, the weights represent the subjective probabilities
of each candidate distribution being the true distribu-
tion, as suggested by Der Kiureghian & Liu (1986). For
a variable x

1
 with k candidate distributions F

1i
(x

1
), i=1,

..., k, the Bayesian distribution is written in the form of

          F1(x1) = p1iF1i(x1)Σ
i = 1

k

                                      (2)

in which p
1i
, satisfying    p1iΣi = 1

k
=1, are the weights.

Furthermore, all candidate distributions are assumed to
have the same mean and variance, because these are
assumed to be known quantities.

After obtaining the distribution in Eq. 2, the CDF of
x becomes known and the MCS can be conducted using
conventional methods. However, the problem arises as
to how to select the candidate distributions and the
weights.

In order to realize the transformation expressed in
Eq. 1 without using the CDF of x, a rational and practi-
cal approach in this case is to build a direct u-x transfor-
mation function using the moment information of x.
The simplest model is utilizing the second-moment
method (Ang & Cornell 1974; Ang & Tang 1984).
Since the first two moment information is generally in-
adequate to reflect the other properties such asymmetry
and sharpness of the distribution, a high-order moment
standardization technique (Ono & Idota 1986) has been
proposed. The method involves the use of the following
inverse transformation of Eq. 1:

                u = Sx(x) = a j x j – 1Σ
j= 1

k

                               (3)

where a
j
, j=1, ..., k, are deterministic coefficients that

are obtained by setting the first k central moments of
S

x
(x) equal to those of u.
Using Eq. 3, to obtain the kth moment standardiza-

tion function, the k(k-1)th central moment of x must be
determined. Even for the third-moment standardiza-
tion, the first six moments of x must be used; and while
the fourth-moment standardization, the first 12 mo-
ments of x must be determined. As such the standard-
ization becomes complicated, and obtaining the accu-
rate standardization function becomes difficult.  In or-
der avoid these shortcomings, a direct u-x transforma-
tion is suggested using the polynomial forms of u (Zhao
& Ono 2000). Without loss of generality, for a stan-
dardized random variable

              xs =
x – µ

σ                                                    (4)

where µ and σ are the mean value and standard devia-
tion of x, respectively, the u-x transformation is built as
the following form.

           xs = Su(u) = a j u j – 1Σ
j= 1

k

                                   (5)

where a
j
, j=1, ..., k, are deterministic coefficients that

are obtained by making the first k central moment of
S

u
(u) to be equal to those of x

s
.

Using Eq. 5, to obtain the kth moment transforma-
tion function, only the first k central moments of x

s
 are

needed. After obtaining the deterministic coefficients
a

j
, j=1, ..., k, the random numbers of x can be easily

obtained using Eq. 5.

Generation of Random Numbers Using Higher-Or-
der Moments

Random Number Generation Using the First Three
Moments

For a random variable with only the first three mo-
ments being known, the u-x transformation is given as

        xs = Su(u) = a1 + a2 u + a3 u2                              (6)

After obtaining the coefficients a
1
, a

2
 and a

3
, the ran-

dom number of x can be readily obtained with the aid of
the following equation using those of u.

        x = σ (a1 + a2 u + a3 u2 ) + µ                              (7)

Making the first three central moments of S
u
(u)

equal to those of x
s
, the following equations containing

a
1
, a

2
 and a

3
 are obtained.

               µsu = a1 + a3 = 0                                        (8a)

               σ su
2 = a2

2 + 2a3
2 = 1                                      (8b)

               α3suσ su
2 = 6a2

2a3 + 8a3
3 = α3                         (8c)

where α
3su

 and α
3
 are the third dimensionless central

moments, i.e. the skewnesses of S
u
 and x, respectively.

After simplification, a
1
, a

2
 and a

3
 are given as (Zhao

& Ono 2000).

             
   

a3 = – a1 = ± 2cos
π + θ

3                     (9)

               a2 = 1 – 2a3
2                                          (10)

             
  

θ = arctan
8 – α3

2

α3
                             (11)

The signs in Eq. 9 are taken to be the sign of α
3
.

From Eq. 11, in order to make Eq. 6 operable, α
3

should be limited in the range of

           – 2 2≤ α3 ≤ 2 2                                         (12)

From the investigation of the skewnesses of some
commonly used random variables, Eq. 6 is found to be
generally operable in engineering. It has been shown
that Eq. 7 essentially defines a three-parameter distri-
bution that can reflect the skewness of statistical data
effectively (Zhao et al  2001).

Random Number Generation Using the First Four Mo-
ments

 For a random variable with only the first four mo-
ments being known, the u-x transformation is given as:

           xs = Su(u) = a1 + a2 u + a3 u2 + a4 u3              (13)

where a
j
, j=1, ..., 4, are deterministic coefficients that

are obtained by making the first four central moments
of S

u
(u) equal to those of x

s
.
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After the four parameters a
1
, a

2
, a

3
 and a

4
 are deter-

mined, the random number of x can be readily obtained
with the aid of the following equation using those of a
standard normal random variable.

       x = σ (a1 + a2 u + a3 u2 + a4 u3) + µ                  (14)

Making the first four central moments of S
u
(u) equal

to those of x
s
, the following equations can be obtained

in terms of the parameters a
1
, a

2
, a

3
 and a

4
 by simply

making use of the first 12 moments of the standard nor-
mal random variable u:

     µsu = a1 + a3 = 0                                               (15a)

    σ su
2 = a2

2 + 2a3
2 + 6a2a4 + 15a4

2 = 1                      (15b)

    α3su = 6a2
2a3+8a3

3+72a2a3a4+270a3a4
2 = α3          (15c)

 
   α4su = 3(a2

4+20a2
3a4+210a2

2a4
2+1260a2a4

3

+ 3465a4
4)+12a3

2(5a2
2+5a3

2+78a2a4

+ 375a4
2) = α4

             (15d)

where α
4su

 and α
4
 are the fourth dimensionless central

moments, i.e. the kurtosis of S
u
 and x, respectively.

Simplifying Eq. 15, the following equations of pa-
rameters a

2
 and a

4
 can be obtained:

       2 A1 A2
2 = α3

2                                                   (16a)

       3A1A3 +3A4= α4                                             (16b)

where

            A1 = 1 – a2
2 – 6a2a4 – 15a4

2                             (16c)

            A2 = 2 + a2
2 + 24a2a4 + 105a4

2                        (16d)

            A3 = 5 + 5a2
2 + 126a2a4 + 675a4

2                    (16e)

          
  A4 = a2

4 + 20a2
3a4 + 210a2

2a4
2

+ 1260a2a4
3 + 3465a4

4                           (16f)

After parameters a
2
 and a

4
 have been obtained from

Eq. 16, parameters a
1
 and a

3
 can be readily given as

             a3 = – a1 =
α3

2A2
                                         (17)

From Eq. 16a, one can see that the values of a
2
 and

a
4
 are independent of the sign of α

3
. For specified val-

ues of α
3
 and α

4
, the parameters a

2
 and a

4
 can be ob-

tained from Eq. 16, which can be solved using com-
mon subroutines of nonlinear equations such as the
“FindRoot” function in “Mathematica” software (Wol-
fram 1996).

In particular, if α
3
=0 and α

4
=3,  then the parameters

are obtained as a
1
=a

3
=a

4
=0, a

2
=1, and Eq. 13  will de-

generate as x
s
=u. If α

3
=2  2 and α

4
=15,  the parameters

are then obtained as a
3
=-a

1
=  2 /2, a

2
=a

4
=0, and Eq. 13

will degenerate as x
s
=-  2 /2+  2 u2/2. If α

3
=0,

α
4
=46.2, the parameters are then obtained as

a
1
=a

2
=a

3
=0, a

4
=1/  15 , and Eq. 13 will degenerate as

x
s
=u3/  15 .

Operable area of Eq.13 in the α
3

2-α
4
 Plane

In the present paper, the values of parameters a
2
 and

a
4
 are obtained using the “FindRoot” function in

“Mathematica” software. For a specified value of α
3
,

when the values of α
4
 are below a limit value, the

“FindRoot” function becomes inoperable. Using the
limit values of α

4
 for which Eq. 16 is inoperable corre-

sponding to the selected α
3
, a lower boundary line in

the α
3

2-α
4
 plane can be depicted as shown in Fig. 1, in

which the operable area of Eq. 13 is indicated by the
shaded region. The lower boundary line for which Eq.
13 is operable is found to be a straight line approxi-
mately expressed by

                α4 = 1.88 + 1.55α3
2                                 (18)

The variations of parameters a
2
 and a

4
 with respect

to a large range of α
4
 values are shown in Fig. 2 & 3, in

which α
3
 is assumed to be 0, 1, 2 and 3. Figures 2 &3

show that even for very large values of  α
4
, continuous

values of parameters a
2
 and a

4
 can also be obtained us-

ing Eq. 16. That is to say, the proposed transformation
is operable for all values above the boundary line
shown in Fig. 1.

In Fig. 1, the limit for all distributions expressed as
  α4 = α3

2 + 1 (Johnson & Kotz 1970) is also depicted
along with α

3

2-α
4
 relationship for some commonly

used distributions, i.e., lognormal, Weibull, Gamma,
Normal, Laplace, Exponential, Gumbel and  Rayleigh
distributions. One can see that the operable area of Eq.
13 covers a large area in the α

3

2-α
4
 plane, and the α

3
2-

α
4
 relationship for most commonly used distributions

are in the operable area of Eq. 13. This implies that Eq.
13 is generally operable for common engineering use.

Numerical Examples and Investigations

Fig. 1. Operable area of Eq.13
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Example 1: Random Number Generation for Some
Commonly Used Random Variables

In order to investigate the efficiency of the proposed
method, six commonly used random variables that
have known CDFs are selected in the first example.
The first four moments of the six distributions are
listed in Table 1, and using the first four moments and
Eq. 16, the four parameters  a

1
, a

2
, a

3
 and a

4
 in Eq. 14

are obtained in Table 1. After the parameters a
1
, a

2
, a

3
and a

4
 are obtained, the random numbers of the six dis-

tributions can be easily generated using Eq. 14 with the
aid of the random numbers of u. The histograms ob-
tained using Eq. 14 for the six distributions are shown
in Fig. 4, in which the thick solid lines indicate the PDF
exactly obtained from the six distributions. In Fig. 4,
the number of samplings is taken to be 40,000 for all
the cases, and the histograms have be scaled using the
following equation in order to compare with the exact
PDF.

                 hi = Hi / ∆x                                        (19)

where H
i
 is the relative frequency and ∆x is the cat-

egory interval of the histogram. h
i
 is the scaled relative

frequency.
From Fig. 4, one can see that the histograms ob-

tained using Eq. 14 fit the exact PDF very well for all

six cases. This implies that the random number genera-
tion method using Eq. 14 is suitable.

According to Eqs. 1 and 14, the percentile point of a
distribution with first four moments corresponding to a
percentage value α can be explicitly evaluated as

       xα = σ (a1 + a2 uα + a3 uα
2 + a4 uα

3) + µ              (20)

where uα is the percentile point of a standard normal
random variable.

The percentile points of 1%, 5%, 10%, 25%, 50%,
75%, 90%, 95% and 99% evaluated using Eq. 19 for
the six distributions are listed in Table 2 along with the
exact results obtained directly using the CDFs of the
six distributions. Table 2 reveals that although only the
first four moments are used in Eq. 14, it provides good
approximations of the exact percentile points for all the
percent levels and all the six cases.

In order to investigate the efficiency of the method
for the case that only the first three moments are
known, the random numbers of the above six com-
monly used random variables are also generated using
their first three moments only. For samplings in which
the number is taken to be 40,000, the histograms ob-
tained using Eq. 7 with the aid of the random numbers
of u for the six cases are shown in Fig. 5, in which the
thick solid lines indicate the PDF which is exactly ob-
tained from the six distributions. From the comparison

Fig. 2. Variation of parameter a
2
 with respect to a

4
Fig. 3. Variation of parameter a

4
 with respect to a

4

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

α
3
=0

α
3
=1

α
3
=2

α
3
=3

a 2

α
4

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100

α
3
=0

α
3
=1

α
3
=2

α
3
=3

a 4

α
4

Case    Distribution                           moments                                                  parameters

                                      mean      COV       α
3
              α

4
                     a

1
                a

2
               a

3
                 a

4

  (a)      Gamma              100       0.3         0.6            3.54               -0.0992         0.9827        0.0992       0.00245
  (b)      Lognormal         100       0.3         0.927        4.5659           -0.1426         0.9308        0.1426       0.01594
  (c)      Weibull              100        0.2       -0.3519       3.0039           0.0614        1.0178       -0.0614       -0.00726
  (d)      Weibull              100       0.6         0.8496       3.7320          -0.1543        1.0105        0.1543       -0.01167
  (e)      Gumbel              100       0.4         1.1396       5.4                -0.1683        0.8969        0.1683        0.02418
  (f)      Rayleigh             100       0.523     0.6311       3.2451          -0.1156        1.0282        0.1156       -0.01407

Table 1. Corresponding distributions and parameters of Fig.4
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between Figs. 4 & 5, one can see that although the accu-
racy of fit using Eq. 7 is generally not as good as that
using Eq. 14, the histograms obtained using Eq. 7 gen-
erally fit the exact PDF for all the six distributions.
Considering the fact that the information of first three
moments only are used in Eq. 7 while the information of
the first four moments are used in Eq. 14, one can see
that Eq.7 can be used to generate the random numbers
of a random variable in the case that only the first three
moments are known.

The percentile points of 1%, 5%, 10%, 25%, 50%,

75%, 90%, 95% and 99% evaluated using Eq. 7 for the
six cases are listed in Table 3 along with the exact re-
sults obtained directly using the CDFs of the six distri-
butions. Table 3 reveals that although only the first
three moments are used in Eq. 7, it provides good ap-
proximations of the exact percentile points for all the
six cases at all the percent levels that are larger than
5%. For cases b, d, e and f at percent level 1%, the
percentile points obtained from Eq. 7 have significant
errors since only the first three moments are used.
Therefore, Eq. 7 is only recommended for cases in

(a) Gamma                                              (b) Lognormal                                   (c) Weibull (COV=0.2)

Fig. 4. Random number generation for some common used distributions using the first four moments

(d) Weibull  (COV=0.6)                        (e) Gumbel                                         (f) Rayleigh

Fig. 5. Random number generation for some common used distributions using the first three moments

(a) Gamma                                              (b) Lognormal                                   (c) Weibull (COV=0.2)

(d) Weibull  (COV=0.6)                        (e) Gumbel                                         (f) Rayleigh
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which the information of  the first three moments only
is known. When the information of the first four mo-
ments is known, Eq. 14 should be used.

Example 2: Standardization for A Simple Performance
Function

The second example considers the following simple
function of two random variables, which is an elemen-
tary reliability model that has several applications

                   X = R – S                                              (21)

where R is a resistance having µ
R
=500, S is a load hav-

ing µ
S
=150.

Table 2. Percentile Point Evaluation for the Six Distributions Using the First Four Moments

   case        Gamma(a)        Lognormal(b)         Weibull(c)          Weibull(d)           Gumbel(e)          Rayleigh(f)

 % Eq.14     exact     Eq.14     exact     Eq.14     exact     Eq.14     exact     Eq.14     exact     Eq.14     exact

   1 43.62     43.59     47.90     48.38     49.05     48.84     8.630     7.697     34.05     34.37     10.88     11.31
   5 56.25     56.27     59.24     59.10     65.07     64.70     19.18     19.89     48.16     47.78     25.17     25.56
 10 63.97     63.99     65.95     65.75     73.43     73.25     29.72     30.24     56.31     55.99     36.55     36.63
 25 78.47     78.48     78.69     78.58     86.98     87.11     54.27     54.29     71.84     71.81     60.68     60.52
 50 97.02     97.02     95.72     95.78     101.2     101.4     90.74     90.59     93.27     93.43     93.96     93.94
 75 118.3     118.3     116.6     116.8     114.4     114.3     135.6     135.7     120.8     120.9     132.7     132.9
 90 139.8     139.9     139.5     139.5     125.0     124.7     182.2     182.3     152.3     152.2     171.2     171.2
 95 153.9     153.9     155.4     155.2     130.7     130.5     212.4     212.5     174.8     174.6     195.4     195.3
 99 182.6     182.7     189.9     189.6     140.1     140.5     273.1     272.9     225.3     225.5     242.4     242.1

   case       Gamma(a)         Lognormal(b)         Weibull(c)          Weibull(d)           Gumbel(e)         Rayleigh(f)

 % Eq.7      exact       Eq.7      exact      Eq.7      exact      Eq.7      exact      Eq.7      exact      Eq.7      exact

  1 44.25     43.59     52.74     48.38     48.45     48.84     1.332     7.697     44.94     34.37     4.211     11.31
  5 56.31     56.27     59.92     59.10     65.21     64.70     18.06     19.89     50.05     47.78     24.44     25.56
10 63.89     63.99     65.54     65.75     73.70     73.25     30.24     30.24     55.73     55.99     37.33     36.63
25 78.33     78.48     77.70     78.58     87.20     87.11     55.68     54.29     69.82     71.81     62.12     60.52
50 96.98     97.02     95.29     95.78     101.2     101.4     91.39     90.59     92.21     93.43     94.46     93.94
75 118.4     118.3     117.2     116.8     114.1     114.3     134.9     135.7     121.7     120.9     131.9     132.9
90 140.0     139.9     140.5     139.5     124.8     124.7     180.8     182.3     154.3     152.2     169.8     171.2
95 154.0     153.9     156.2     155.2     130.8     130.5     211.3     212.5     176.5     174.6     194.5     195.3
99 182.4     182.7     188.8     189.6     141.2     140.5     274.7     272.9     223.8     225.5     244.7     242.1

Table 3. Percentile Point Evaluation for the Six Distributions Using the First Three Moments

The following four cases are investigated under the
assumption that R and S follow different probability
distributions.

Case-1: R is Normal and S is Lognormal with V
R
=0.2

and V
S
=0.4.

Case-2: R is Lognormal and S is Weibull with V
R
=0.2

and V
S
=0.4.

Case-3: R is Gamma and S is Gumbel with V
R
=0.1

and V
S
=0.4.

Case-4: R is Weibull and S is Lognormal with V
R
=0.1

and V
S
=0.4.

Using the first four moments of R and S, the first four
moments of X can be easily obtained in Table 4. Using

Case                               moments                                                                 parameters

                mean         COV               α
3
                  α

4
                      a

1
                a

2
                   a

3
                  a

4

  1             350          0.333           -0.1721          3.2081            0.0276           0.9792          -0.0276          0.00663
  2             350          0.333            0.3456          3.3443           -0.0553           0.9749           0.0553          0.00728
  3             350          0.223           -0.4642          3.8460             0.0691          0.9347          -0.0691          0.01978
  4             350          0.223           -0.7608          4.1653             0.1172          0.9408          -0.1172          0.01488

Table 4. Corresponding moments and parameters of Fig.6
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the first four moments and Eq. 16, the four parameters
a

1
, a

2
, a

3
 and a

4
 in Eq. 14 are obtained in Table 4. After

the parameters a
1
, a

2
, a

3
 and a

4
 are obtained, the u-x

transformation  of X can be easily obtained using Eq.
13. For comparison, the exact transformation is ob-
tained using the PDF/CDFs of R and S, which is ex-
pressed as:

        
   FX(xs) = FR(σ xxs + µx + t) fS(t)dt                 (22)

where F
X
 and F

R
 are the CDFs of X and R respectively,

f
S
 is the PDF of S, and σ

x
 and µ

x
 are the standard devia-

tion and mean value, respectively, of X.
The variations of x

s
 with respect to u obtained using

Eq. 13 are shown in Fig. 6 along with those exactly ob-
tained using Eq. 22, where the thick dash lines indicate
the results of Eq.13 and the thin solid lines indicate the

exact results. Figure 6 shows that Eq. 13 provides good
approximations of the exact results.

Using the first four moments of R and S, the random
number of R and S can be easily generated with the aid
of Eq. 14, and the MCS results of the probability of fail-
ure are obtained as 3.01× 10-3 (β=2.747), 2.8× 10-4

(β=3.450), 5.9× 10-4 (β=3.244), 8.4× 10-4 (β=3.142) for
the four cases, when the number of samplings is taken
to be 100,000. The MCS results using the CDFs with
the same number of samplings are obtained as
3.11× 10-3(β=2.736), 3.0× 10-4(β=3.432), 6.0× 10-

4(β=3.239), 8.5× 10-4 (β=3.138). One can see that the
results using the first four moments are in good agree-
ment with those using the CDFs for all the four cases.

Example 3: Data Fitting for Random Variables with
Unknown CDFs

According to Eqs. 1 and 14, a four parameter distri-
bution can be defined by the following probability den-
sity function (PDF) of x.

               f (x) =
φ(u)

σ(a2 + 2a3u + 3a4u
2)

                          (23)

where φ is the PDF of u.
For a random variable with unknown CDF/PDF, al-

though the MCS in the present paper has not used its
CDF/PDF, the use of Eq.14 essentially implies that the
variable obeys a distribution defined by Eq. 23. In order
to investigate the efficiency of Eq. 23 in fitting statisti-
cal data of a random variable with unknown CDF/PDF,
the third example uses the practical data of H-shape
structural steel collected by Ono et. al(1986). The fit-
ting result of the histogram of the ratio between mea-
sured values and nominal values for the thickness is
shown in Fig. 7, in which the number of data is 885 and
the first-four moments of the data are obtained as
µ=0.986, σ=0.0457, α

3
=0.883, α

4
=5.991. In Fig. 7, the

PDFs of the normal and lognormal distributions whose
mean values and deviations are equal to those of the
data, the PDF of the three-parameter distribution Zhao

Fig. 7. Data Fitting for Thickness
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et. al.(2001) whose first-three moments are equal to
those of the data, and the PDF of the four-parameter
distribution described in Eq. 23 whose first-four mo-
ments are equal to those of the data, are depicted. Fig-
ure 7 reveals the following:

(1) The PDFs of the normal distribution and lognor-
mal distribution have the greatest differences from the
histogram of the statistical data among the four distri-
butions. Since normal distribution is a symmetrical dis-
tribution (α

3
=0, α

3
=3), it obviously can not be used to

fit the histogram that has such a large skewness
(α

3
=0.883) and kurtosis (α

4
=5.991). Although the log-

normal distribution can reflect skewness and kurtosis in
some degree, the skewness and kurtosis are dependent
on the coefficient of variation. Since the coefficient of
variation for this data is very small (0.0463), the skew-
ness and kurtosis of lognormal distribution correspond-
ing to this coefficient of variation are too small
(α

3
=0.139, α

4
=3.0344) to match those of the data.

(2) Since the skewness of the three-parameter distri-
bution is equal to that of the statistical data, it fits the
histogram much better than the normal and lognormal
distributions. However, the kurtosis of the three-param-
eter distribution is dependent on the skewness. The kur-
tosis corresponding the skewness of this data is ob-
tained as α

4
=4.04 which is obviously too small to match

that of the data. Therefore, the PDF of the three-param-
eter distribution is also very different from the histo-
gram of the statistical data.

(3) Since both the skewness and kurtosis of the four-
parameter distribution are equal to those of the statisti-
cal data, it fits the histogram much better than the nor-
mal, lognormal and the three-parameter distributions.
That is to say, the four-parameter distribution is more
suitable for this statistical data.

Similarly, the fitting result of the histogram of the
ultimate stress is shown in Fig. 8, in which the number
of data is 1932 and the first-four moments of the data
are obtained as µ=4.549, σ=0.317, α

3
=0.153, α

4
=6.037.

From Fig. 8, one can see that since the skewness for this
data is quite small, the three-parameter distribution can
not show significant improvement upon the normal and
lognormal distributions. One can also see that since
both the skewness and kurtosis of the four-parameter
distribution are equal to those of the statistical data, it
fits the histogram much better than the normal, lognor-
mal and the three parameter distributions. That is to
say, the four-parameter distribution is more suitable for
this statistical data.

Example 4: Reliability Analysis of A Column
The fourth example considers the following simple

performance function, a simple compressive limit state
of a structural column.

                 G(X) = Ax1 x2 – x3                                   (24)
Where A is the nominal section area, x

1
 is a random

variable presenting the uncertainty included in A, x
2
 is

yield stress and x
3
 is a compressive load. The column is

made of H-shape structural steel with a section area of

A=72.38cm2. The CDFs of x
1
 and x

2
 are unknown, the

only information about them are their first four mo-
ments (Ono, Idota & Kawahara 1986), i.e., µ

1
=0.990,

σ
1
=0.051, α

31
=0.709, α

41
=3.692, µ

2
=3.055 t/cm2,

σ
2
=0.364, α

32
=0.512, α

42
=3.957. x

3
 is assumed as a log-

normal variable with mean value µ
3
=100t and standard

deviation σ
4
=40.

Although the CDFs of x
1
 and x

2
 are unknown, using

Eq.14, the random sampling of x
1
 and x

2
 can be easily

generated without using their CDFs, and the MCS can
thus be easily conducted. The probability of failure is
obtained as P

f
=0.0188 (β=2.079) when the number of

samplings is taken to be 10,000.

Conclusion
In order to include the random variables with un-

known CDFs into MCS, an inverse normal transforma-
tion is suggested. Using the proposed method, the ran-
dom numbers of random variables with an unknown
CDF can be easily generated utilizing those of a stan-
dard normal random variable. Through some examples,
the efficiency of the method is investigated. It is found
that although the method is quite simple, it is accurate
enough to include the random variables with unknown
CDF into MCS of structural reliability.
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