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ABSTRACT: There are many areas of structural safety and structural dynamics in which it is often desirable
to compute the first few statistical moments of a function of random variables. The usual approximation is by
the Taylor expansion method. This approach requires the computation of derivatives. In order to avoid the
computation of derivatives, point estimates for probability moments have been proposed. However, the accuracy
is quite low, and sometimes, the estimating points may be outside the region in which the random variable is
defined. In the present paper, new point estimates for probability moments are proposed, in which increasing
the number of estimating points is easier because the estimating points are independent of the random variable
in its original space and the use of high-order moments of the random variables is not required. By using this
approximation, the practicability and accuracy of point estimates can be much improved.
INTRODUCTION

The uncertainties treated in classical stochastic dynamic
analysis are usually restricted to the excitation (Ibrahim 1987;
Singh and Lee 1993). However, it has recently been recog-
nized that the model parameters such as material properties
are often poorly known. The inclusion of their uncertainties
has therefore become an increasingly important problem in
many areas of dynamics. In mathematics, this problem can, in
the final analysis, be summarized as the computation of the
first few statistical moments of a function of random variables,
which are expressed as the following:

m = G(X) f (X) dX (1)g E
kM = (G(X) 2 m ) f (X) dX for k $ 2 (2)kg gE

where G(X) is a function of the random variables X; mg is the
mean value of G(X); Mkg is the kth central moment of G(X);
and f (X) is the joint probability density function of X.

Because G(X) is generally a complicated and implicit func-
tion, the computation of (1) and (2) by direct integration is
almost impossible. The usual approximation is by the Taylor
expansion method (Ibrahim 1987; Singh and Lee 1993). This
approach requires the computation of derivatives (Rosenblueth
1975), which are generally difficult to obtain. Rosenblueth
(1975) has given expressions that do not involve derivatives
for estimating the first few moments of a function of random
variables. The method uses a weighted sum of the function
evaluated at a finite number of points, which are chosen to
satisfy the following equation:

m

kP (x 2 m ) = M (3)j j x kxO
j=1

where xj, j = 1, . . . , m are estimating points; and Pj, j = 1,
. . . , m are the corresponding weights.

Rosenblueth (1975) gives expressions for a two point esti-
mate. Gorman (1980) derived expressions for a three point
estimate as follows:
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s 1 1 1 a /ux 3x
x = m 2 (u 2 a ); P = (4a,b)2 x 3x 2 S D22 2 a 2 a4x 3x

1
x = m ; P = 1 2 (5a,b)0 x 0 2a 2 a4x 3x

s 1 1 2 a /ux 3x
x = m 1 (u 1 a ); P = (6a,b)1 x 3x 1 S D22 2 a 2 a4x 3x

where

2 1/2u = (4a 2 3a ) (7)4x 3x

x2, x0, and x1 are the estimating points; P2, P0, and P1 are the
corresponding weights; and a3x and a4x are the 3rd and 4th
dimensionless central moment, i.e., the skewness and kurtosis,
respectively.

For a function y = y(x), the kth central moment of y can be
calculated by

m = P y(x ) 1 P y(x ) 1 P y(x ) (8)y 2 2 0 0 1 1

k k kM = P (y(x ) 2 m ) 1 P (y(x ) 2 m ) 1 P (y(x ) 2 m )ky 2 2 y 0 0 y 1 1 y

(9)

Eqs. (4)–(9) have been applied to system reliability analysis
and response uncertainty evaluation (Gorman 1980; Ono et al.
1985; Zhao et al. 1999), and it has been found that the method
has the following weaknesses:

1. The accuracy in general cases is quite low (Gorman
1980), especially in cases where the parameter uncer-
tainties and the nonlinearity in the performance function
are both large, or when the method is used to evaluate
high-order moments (Zhao et al. 1999).

2. For some random variables, such as variables having a
lognormal or exponential distribution, if the standard de-
viation is relatively large, then x2 given by (4) will be
outside of the region in which the random variable is
defined, and so the computation will be impossible.

Because the procedure of point estimates is very simple and
does not require the computation of derivatives, if the two
weaknesses described above can be eliminated, the uncertainty
analysis in structural dynamics will become simpler. The ob-
ject of this paper is to propose new point estimates for prob-
ability moments that remove these two weaknesses.

NEW POINT ESTIMATES FOR PROBABILITY
MOMENTS

Basic Ideas

The most basic way to improve the accuracy of the current
point estimates is to increase the number of estimating points.
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In general, for an m point estimate, supposing that an esti-
mating point is fixed at x0 = mx, 2m 2 1 equations expressed
in (3) will be needed and the first 2(m 2 1) moments of x
will be required. However, the high-order moments of an ar-
bitrary random variable are not always easy to obtain, and it
is generally hard to accept the use of moments higher than 4th
order in engineering. Even if the moments higher than 4th
order could be used, it would be almost impossible to obtain
the general expressions for x1, x2, . . . , xm and P1, P2, . . . , Pm

for an arbitrary random variable. Furthermore, because the
moment Mkx is dependent on the distribution of the random
variable, it is difficult to avoid that the estimating point may
move outside the region on which the random variable is de-
fined. Due to the above problems, the three point estimate
seems to be the limit, unless a different route can be found.

In order to avoid the aforementioned problems, the esti-
mating points will be obtained, in the present paper, in the
standard normal space. This is because any set of random var-
iables can easily be transformed into a set of standard normal
random variables through the Rosenblatt transformation (Hoh-
enbichler and Rackwitz 1981)

U = T(X) (10)

Using the inverse Rosenblatt transformation, (1) and (2) can
be rewritten as

21m = G[T (U)]f(U) dU (11)g E
21 kM = (G[T (U)] 2 m ) f(U) dU for k > 2 (12)kg gE

where f is the probability density function of standard normal
random variables.

Because the estimating points and their corresponding
weights for a standard normal random variable can be directly
obtained by utilizing those of Hermite integration, the solution
of the 2m 2 1 equations is unnecessary. Furthermore, because
no central moment of the original random variables is required
when obtaining the estimating points in the standard normal
space, and the normal random variable is defined within the
whole range (2`, `), the problem of an estimating point go-
ing outside of the region on which the random variable is
defined is avoided.

After obtaining the estimating points u1, u2, . . . , um and their
corresponding weights P1, P2, . . . , Pm, the kth central moment
of a function y = y(x) can be calculated as

m

21m = P y[(T (u )] (13)y j jO
j=1

m

21 kM = P (y[(T (u )] 2 m ) (14)ky j j yO
j=1

Here T21(uj) is the inverse Rosenblatt transformation. Note
that the general expression for the function G[T21(U)] in (13)
and (14) is not necessary, and that the inverse Rosenblatt trans-
formation is only required at the estimating points.

Estimating Points and Corresponding Weights in
Standard Normal Space

Substituting the characteristics of the normal random vari-
ables into (3), one obtains

m
1k 2 ku exp 2 u du = 2p P u (15)Ï j jE S D O2 j=1
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The left-hand side of (15) is a Hermite integration with
weight function exp(2u2/2). The estimating points ui and their
corresponding weights P can readily be obtained as

wi
u = 2x ; P = (16a,b)Ïi i i

pÏ

where xi and wi are the abscissas and weights for Hermite
integration with weight function exp(2x2) (Abramowitz and
Stegun 1972).

For a five point estimate in standard normal space,

u = 0; P = 8/15 (17a,b)0 0

u = 2u = 1.3556262; P = 0.2220759 (17c,d )11 12 1

22u = 2u = 2.8569700; P = 1.12574 3 10 (17e, f )21 22 2

For a seven point estimate in standard normal space,

u = 0; P = 16/35 (18a,b)0 0

u = 2u = 1.1544054; P = 0.2401233 (18c,d )11 12 1

22u = 2u = 2.3667594; P = 3.07571 3 10 (18e, f )21 22 2

24u = 2u = 3.7504397; P = 5.48269 3 10 (18g,h )31 32 3

Point Estimates for Function of N Variables

The procedure described above can be generalized to a func-
tion of many variables Z = G(X), where X = x1, x2, . . . , xn.
The joint probability density is assumed to be concentrated at
points in the kn hyperquadrants of the space defined by the n
random variables, where k is the number of estimating points
used in the point estimates for functions of single random var-
iables. The computation becomes excessive when n is large.

When the random variables are mutually independent, Ro-
senblueth (1975) approximates G(X) by the following func-
tion:

n
Zi

Z = G9(X) = G (19)m P S DGmi=1

where Gm is the function evaluated at the variable means; and
Zi are the functions computed as though xi were the only ran-
dom variable, with the other variables set equal to their mean
values.

Because the probability moments of Zi are estimated using
two points, only 2n 1 1 points are required in the approxi-
mation. Gorman (1980) improved the approximation by eval-
uating the probability moments of Zi using his three point es-
timate, in which again only 2n 1 1 points are required because
the variable mean point is common to all of the n variables.
It will be pointed out that there are significant errors in these
approximations.

In the present paper the function G(X) is approximated by
the following function:

n

G9(X) = (G 2 G ) 1 G (20)i m mO
i=1

where

21G = G[T (U )] (21)i i

Ui means ui is the only random variable, with the other vari-
ables set equal to mean values transformed into standard nor-
mal space; Gi is a function of only ui.

Because U = T(X) are mutually independent, and so Gi are
also independent from each other, one can obtain the following
equations
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FIG. 1. Point Estimate Results for Mean Values in Example 2

n

m = (m 2 G ) 1 G (22)G i m mO
i=1

n

2 2s = s (23)G iO
i=1

n

3 3a s = a s (24)3G G 3i iO
i=1

n n21 n

4 4 2 2a s = a s 1 6 s s (25)4G G 4i i i jO OO
i=1 i=1 j>1

where mi, ai, a3i, a4i are the probability moments of Gi, which
can be obtained by using the point estimate described in the
previous section. Only 5n and 7n points are required when
using five point and seven point estimates, respectively, for the
probability moments of Gi. Note that since U = T(X) are mu-
tually independent, the assumption that X should be mutually
independent is not required in (22)–(25).

NUMERICAL EXAMPLES AND INVESTIGATIONS

First Example

The first example considers the following function of a stan-
dard exponential random variable:

y = 2ln(x) (26)

where x > 0; mx = 1; sx = 1; a3x = 2; a4x = 9; and y is a
random variable with standard extreme value distribution with
my = 0.577216, sy = 1.28255, a3y = 1.139548, and a4y = 5.4.

Substituting the moments of x into (4)–(7), one finds that
x2 gives a value outside of the region in which x is defined.
This means that Rosenblueth’s two point and Gorman’s three
point estimates can not be applied in such an example. Using
the point estimates in standard normal space proposed in the
present paper, the first four moments of y can easily be eval-
uated without the problem described above. The results ob-
tained by using the seven point estimate are my = 0.577214,
sy = 1.282547, a3y = 1.139665, and a4y = 5.399765. They give
good approximations of the exact results in this example.

Second Example

The second example considers the following function (Ro-
senblueth 1975):

ky = x (27)
FIG. 2. Point Estimate Results for Standard Deviation in Ex-
ample 2

FIG. 3. Point Estimate Results for Skewness in Example 2

where x is a lognormal random variable with mean value m =
1 and coefficient of variation V = 0.2. The exact first four
moments are given by Gorman (1980).

Plots of the ratio of the approximate mean and coefficient
of variation to the exact values for values of k from 1 to 7 are
shown in Figs. 1 and 2, respectively, for Rosenblueth’s two
point, Gorman’s three point, and the present five and seven
point estimates. Figs. 1 and 2 show that the present five and
seven point estimates give great improvement over Rosen-
blueth’s two point and Gorman’s three point estimates, and the
seven point estimate agrees with the exact ones very well.

Plots of the ratio of the approximate skewness to the exact
values for values of k from 1 to 7 are shown in Fig. 3 for
Rosenblueth’s two point, Gorman’s three point, and the five
and seven point estimates. From Fig. 3, it can be seen that the
present five and seven point estimates give much improvement
over Rosenblueth’s two point and Gorman’s three point esti-
mates, but still give significant error when k is large. In this
case, more estimating points are needed to obtain more ac-
curate results.

Third Example

The third example considers the following function of mul-
tirandom variables:

2 2 4y = x x 1 2x (28)1 2 3



TABLE 1. Comparison between Results of Point Estimates
and Exact Results for Example 3

Moment
(1)

V
(2)

Gorman
(3)

Present

5 points
(4)

7 points
(5)

Exact
(6)

my 0.1 3.1439 3.1430 3.1430 3.1431
0.2 3.6254 3.6106 3.6106 3.6122
0.3 4.6194 4.5338 4.5342 4.5423
0.4 6.5159 6.1863 6.1927 6.2184

sy 0.1 0.9392 0.9277 0.9277 0.9296
0.2 2.5017 2.4368 2.4409 2.4539
0.3 5.8079 5.7113 5.8567 5.9008
0.4 13.580 13.326 14.997 15.349

a3y 0.1 1.1547 1.1428 1.1453 1.1537
0.2 2.1811 3.0120 3.2858 3.2762
0.3 3.2885 5.5551 8.6631 9.7069
0.4 5.0529 7.5452 18.825 38.779

a4y 0.1 4.1434 5.5440 5.6479 5.6397
0.2 7.6257 18.147 27.284 28.876
0.3 15.563 43.157 161.12 385.28
0.4 39.643 65.915 561.31 15610

where x1, x2, and x3 are independent lognormal random vari-
ables with mx1 = mx2 = mx3 = 1 and Vx1 = Vx2 = Vx3 = V.

The approximate mean and standard deviation for values of
V from 0.1 to 0.4 are listed in Table 1, for Gorman’s approx-
imation and the present approximation with five and seven
point estimates for a single variable. Table 1 shows that the
results obtained by all the approximations are close to the ex-
act results for the mean value my. For the standard deviation
sy, there are significant errors in Gorman’s approximation,
while the results obtained by using the seven point estimate
are in good agreement with the exact results. For the skewness
a3y and kurtosis a4y, results obtained by Gorman’s approxi-
mation are seen to be far from the exact results, while those
obtained by using the present approximation are relatively
close to the exact results. The values of a3y and a4y obtained
by using the seven point estimate agree with the exact results
quite well for V equal to 0.1 and 0.2. For V = 0.3 and 0.4,
more estimating points are needed to obtain a good accuracy.

CONCLUSIONS

1. New point estimates in standard normal space were pro-
posed for evaluating probability moments of a function
of random variables. With these new point estimates, in-
creasing the number of estimating points is easier be-
cause the estimating points are independent of the ran-
dom variable in the original space and the use of
high-order moments of the random variables is not re-
quired.

2. By using the present five and seven point estimates, the
accuracy of the approximation can be greatly improved.
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However, for approximation of high-order moments,
more estimating points will be required in order to im-
prove accuracy.

3. An approximation function for n random variables was
given, in which 5n points and 7n points were used. They
generally give more accurate approximations than the
current methods.
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APPENDIX II. NOTATION

The following symbols are used in this paper:

f (X) = joint probability density function of X;
G(X) = performance function of structures;

Gi = functions computed as though ui were the only random
variable, with other variables set equal to mean values
transformed into standard normal space;

Gm = function G evaluated at variable means;
Mk = kth central moment;

n = number of random variables;
P0 = weight corresponding to estimating point u0;
Pi = weight corresponding to estimating point ui and ui1;
U = random variables in standard normal space;
u0 = central estimating point in standard normal space;

ui2 = ith estimating point little than u0;
ui1 = ith estimating point larger than u0;
X = random variables in original space;
a3 = 3rd dimensionless central moment, known as skewness;
a4 = 4th dimensionless central moment, known as kurtosis;
mg = mean value;
sg = standard deviation; and

f(x) = standard normal density distribution with argument x.


