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ABSTRACT: In the second-order reliability method the principal curvatures, which are defined as the eigen-
values of rotational transformed Hessian matrix, are used to construct a paraboloid approximation of the limit
state surface and compute a second-order estimate of the failure probability. In this paper, the accuracy of the
previous formulas of SORM are examined for a large range of not only curvatures but also number of random
variables and first-order reliability indices. For easy practical application of SORM in engineering, a simple
approximation of SORM is suggested and an empirical second-order reliability index is proposed. By the new
approximations, SORM can be easily applied without rotational transformation and eigenvalue analysis of Hes-
sian matrixes. The empirical reliability index proposed in this paper is shown to be simple and accurate among
the existing SORM formulas with closed forms. The proposed empirical reliability index gives good approxi-
mations of exact results for a large range of curvature radii, the number of random variables, and the first-order
reliability indices.
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INTRODUCTION

The ultimate goal in structural reliability analysis is to eval-
uate the probability content of part of an n-dimensional prob-
ability space. Difficulty in computing this probability has led
to the development of various approximation methods, of
which the first-order reliability method (FORM) is considered
to be one of the most acceptable computational methods (Bjer-
ager 1991). FORM is an analytical approximation in which
the reliability index is interpreted as the minimum distance
from the origin to the limit state surface in standardized normal
space and the most likely failure point (design point) is
searched using mathematical programming methods (Shino-
zuka 1983). Because the performance function is approxi-
mated by a linear function at the design point, accuracy prob-
lems arise when the performance function is strongly
nonlinear.

The second-order reliability method (SORM) has been es-
tablished as an attempt to improve the accuracy of FORM.
SORM is obtained by approximating the limit state surface at
the design point by a second-order surface, and the failure
probability is given as the probability content outside the sec-
ond-order surface.

The first thorough study on SORM was performed by Fies-
sler et al. (1979), in which second-order Taylor expansions as
well as curvature-fitted second-order surfaces were considered.
An asymptotically exact result for parabolas was derived by
Breitung (1984), and a more accurate three-term formula has
been proposed by Tvedt (1983). Exact results for a paraboloid
were derived by Tvedt (1988) and have been extended to cover
all the quadratic forms of Gaussian variables (Tvedt 1990).
Furthermore, a point-fitted parabolic algorithm was developed
by Der Kiureghian et al. (1987, 1991) and an importance sam-
pling improvement was introduced by Hohenbichler et al.
(1988). Recently, new approximations have been obtained us-
ing McLaurin series expansion and Taylor series expansion
(Koyluoglu and Nielsen 1994; Cai and Elishakoff 1994). How-
ever, the applications of these formulas have not been ade-
quately investigated.
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The object of this paper is to investigate the accuracy of
previous SORM formulas and suggest a simplified SORM for
practical application in engineering. Weaknesses in the current
SORM formulas are examined through several examples for a
large range of not only curvatures but also number of random
variables and first-order reliability indices. A simple approxi-
mation of SORM is suggested and an empirical second-order
reliability index is proposed.

REVIEW OF SECOND-ORDER RELIABILITY METHOD

The second-order Taylor expansion of a performance func-
tion in standardized space G(U) at design point U* can be
expressed as (Fiessler et al. 1979; Tvedt 1990)

1T TG(U) = b 2 a U 1 (U 2 U*) B(U 2 U*) (1)F 2

where

2=G(U*) = G(U*) Ta = ; B = ; b = a U*Fu=G(U*)u u=G(U*)u

bF = first-order reliability index.
By a rotation of U into a new set of mutually independent,

standard, normal random variables X = HU, where the nth
row of the rotation matrix H is a, one obtains

T
1 X9 X9

G 9(X) = 2(x 2 b ) 1 A (2)n F S D S Dx 2 b x 2 b2 n F n F

where X9 = (x1, x2, . . . , xn21) and A = HBHT.
The performance function of (2) can be expressed with no

loss of generality by

n

2G(Y) = a 1 (g y 1 l y ) (3)j j j jO
j=1

The exact integral expression for the probability content of
the quadratic set is given by Tvedt (1990); simpler expressions
were given using the following parabolic surface (Breitung
1984; Tvedt 1983; Der Kiureghian et al. 1987, 1991; Hohen-
bichler et al. 1988; Koyluoglu and Nielsen 1994; Cai and Elis-
hakoff 1994):

n21
1 2G(Y) = 2(y 2 b ) 1 k y (4)n F j jO2 j=1

which implies that (2) is approximated by

1 TG 9(X) = 2(x 2 b ) 1 X9 A9X9 (5)n F 2



where kj , j = 1, . . , n 2 1 are principal curvatures at the design
point that are determined as the eigenvalues of A9.

uA9 2 kIu = 0 (6)

Y is also a set of mutually independent, standard, normal ran-
dom variables obtained by another rotation of X, Y = RX,
where R is a matrix with the eigenvectors of A9 as column
vectors.

Almost all of the SORM formulas use the performance
function of (4) to evaluate failure probability. Appendix I lists
four of these formulas that will be investigated in this paper.

The currently used SORM approximation exhibits the fol-
lowing problems, which may be considered to be the main
reasons SORM has not been used extensively up to now.

1. The difference in the principal curvatures between (2)
and (5), and the inaccuracy resulting from replacing (2)
by (5) have not been adequately investigated. Simpler
approximations may be possible.

2. The principal curvatures kj defined by (6) are used in
almost all of the previous SORM approximations. In or-
der to obtain the principal curvatures kj in (4), two matrix
rotations, i.e., the rotation to obtain A in (2) and the
eigenvalue analysis in (6), are needed. These rotations
are quite complicated and the definition of the principal
curvatures is not easily understood by engineers because
the definition is different from that in differential ge-
ometry, as investigated in Appendix II in the case of
three dimensions.

3. Most importantly, the accuracy of these approximations
is questionable. The ensuing sections of this paper will
show that, although they are quite complicated, almost
all of the existing SORM formulas give good approxi-
mations for only a small range of curvatures, number of
random variables, and first-order reliability indices.

SIMPLE APPROXIMATION OF SECOND-ORDER
RELIABILITY METHOD

In order to avoid the difficulties described above, consider
the second-order Taylor expansion in standardized space, (2).
Forming a plane surface in the xn 2 xj plane though the design
point X*, the intersection curve between the limit state surface
(2) and the plane can be expressed as

2 2a x 1 2a x (x 2 b ) 1 a (x 2 b ) 2 2(x 2 b ) = 0 (7)jj j nj j n F nn n F n F

The curvature of this curve at the design point is obtained
as

k 9 = a , j = 1, . . . , n 2 1 (8)j jj

in which ajj, j = 1, . . . , n 2 1 are diagonal elements of A.
The sum of the principal curvatures kj , j = 1, . . . , n 2 1 of

the limit state surface at the design point can be expressed as
the following equation according to differential geometry (Ko-
bayasi 1977):

n21 n21 n

K = k = k 9 = a 2 a (9)s j j jj nnO O O
j=1 j=1 j=1

Because A is transformed from B using orthonormal trans-
formation, (10) holds true according to linear algorithms.

n n

Ta = b a = a Ba (10)jj jj nnO O
j=1 j=1

where bjj , j = 1, . . . ,n 2 1 are the diagonal elements of B.
Introducing (10) into (9), Ks can be expressed as
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n

TK = b 2 a Ba (11)s jjO
j=1

Approximating the limit state surface by a rotational para-
bolic surface of diameter 2R, where R is the average principal
curvature radius expressed as

n 2 1
R = (12)

Ks

the performance functions in standardized space can be ex-
pressed simply as (13), which is a special form of (4)

n21
1 2G(U) = 2(u 2 b ) 1 u (13)n F jO2R j=1

The limit state surface of (13) is convex to the origin when
R is positive and is concave to the origin when R is negative.
The performance function Z = G(U) is a combination of a
standardized, normal random variable and a random variable
of a central chi-square distribution with n 2 1 degrees of free-
dom (Fiessler et al. 1979). The probability Pf = Prob {G(U)
< 0} is computed using

`

t
2P = F 2 b f (t) dt (14)F F xE S D n212R0

where

1 t(n23)/2
2f (t) = t exp 2 (15)x S Dn21 2n 2 1 (n21)/2G 2S D2

Although (13) is considered to be only a special case of (4),
the corresponding failure probability can be obtained accu-
rately, and the present study will show that the approximation
has an accuracy comparable to other existing formulas. The
present approximation has the following characteristics:

• Although the orthogonal transformation matrix A is used
to deduce the formula of Ks, finally Ks is actually ex-
pressed in terms of elements of B rather than those of A.
Therefore, the rotational matrix transformation and eigen-
value analysis are not required for the calculation of Ks.

• The curvature definition used in (11) is the common, eas-
ily understood definition, whereas the definition in (6) is
different, as shown in Appendix II.

• The computation required for the failure probability (14)
does not possess any singularities except at R = 0.

• Both (5) and (13) are approximations of (2), but (13) is
much simpler than (5), and the failure probability corre-
sponding to (13) is easier to be obtained.

EMPIRICAL SECOND-ORDER RELIABILITY INDEX

Since a closed form expression for (14) cannot be obtained,
numerical integration is necessary. Easy application requires
the probability to be presented in closed form. Because it is
very difficult to obtain a closed-form result with a high enough
degree of accuracy, this study obtained an empirical closed-
form solution.

According to the variations in the second-order reliability
index investigated using four special second-order perfor-
mance functions (Zhao and Ono 1997), an empirical second-
order reliability index was obtained as follows:

K 1s
b = 1 2 b 1 K K $ 0 (16a)s F s sS D3b 1 3(n 2 1)/K 1 1 2F s

2K 1s
b = 1 2 b 1 K K < 0 (16b)s F s sS D3(n 2 b 1 3) 2F



FIG. 2. Variation of Empirical Reliability Index with Respect to
Number of Random Variables

FIG. 1. Variation of Empirical Reliability Index with Respect to
Curvature Radius

where Ks = sum of principal curvatures of limit state surface
described in (11); R = average principal curvature radius de-
scribed in (12); n = number of random variables; bF = first-
order reliability index; bs = second-order reliability index.

Eq. (16) is very simple and it has been shown in Zhao and
Ono (1997) that it has sufficient accuracy in almost all cases
that do not have a large number of random variables or small
curvature radii. To improve the computational accuracy in the
two cases mentioned above, the following empirical second-
order reliability index is obtained from a large number of com-
putations and regressions.

2[(n21)/2]{11[2K /10(112b )]}s F
f(b )F21b = 2F F(2b ) 1 1s FF S D GRF(2b )F

K $ 0s (17a)

2.5Ks
b = 1 1 bs FS D22n 2 5R 1 25(23 2 5b )/RF

1 Ks
1 K 1 1 K < 0s sS D2 40 (17b)

Eqs. (17a) and (17b) have different analytical expressions,
they are obtained only by regressions using trial-and-error
method. The expression of (17a) is similar to that of Koylu-
oglu’s formula (Appendix I) when kj = 1/R and kj > 0 for j =
1, . . . n 2 1, so it can be also interpreted as a correction for
Koyluoglu’s formula in this case.

Figs. 1–3 depict the differences between the bs obtained by
(16) and (17). Fig. 1 shows the relationship between bs and
FIG. 3. Variation of Empirical Reliability Index with Respect to
First-Order Reliability Index

FIG. 4. Variation of Reliability Index with Curvature Radius for
Example 1

curvature radius R for the number of random variables n = 8,
where the three horizontal lines represent three levels of first-
order reliability index bF = 2, 3, 4. Fig. 2 shows the relation-
ship between bs and n for R = 5 and R = 25, respectively,
where the three horizontal lines represent three levels bF = 2,
3, 4, as in Fig. 1. Fig. 3 shows the relationship between bs

and bF for R = 5 and R = 25, respectively, where two cases
of n = 8 and n = 24 are given in the figure.

From the results shown in Figs. 1–3, one can see that both
(16) and (17) give good approximations of the exact results
for relative large curvature radii and small number of random
variables. Because (17) provides better accuracy in the case of
small curvature radii and large number of random variables,
(17) is proposed as the empirical second-order reliability index
in this study.

EXAMPLES AND INVESTIGATIONS

Investigation for Rotational Parabolic Surface

The first example considers the performance function (13)
directly. Because (13) is a special form of (4), all the closed
form results that are claimed to be accurate for (4) should also
be accurate for (13).

The variations of the computational results of second-order
reliability index with respect to curvature radius R are shown
in Fig. 4 (exact results, those obtained by (17), and those ob-
tained by the four kinds of SORM formulas listed in Appendix
I). These are denoted as exact, present, Breitung, Koyluoglu,
Cai, and Tvedt, respectively. The exact results are obtained
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FIG. 5. Variation of Reliability Index with Number of Random
Variables for Example 1

using the direct integration of (14). The first-order reliability
index is taken to be 2.0, which is depicted as a horizontal line
in the figure. The number of random variables is taken to be
8. From Fig. 4, one can see that the second-order reliability
indices obtained from all of the formulas improve the first-
order reliability index to some degree. When the absolute cur-
vature radius is large, all of the second-order reliability indices
converge, and are close to the exact value as well as the first-
order reliability index. For positive curvature, Tvedt’s formula,
Koyluoglu’s formula, and the present formula give good ap-
proximations of the exact results, whereas Cai’s formula pro-
duces a large error for relatively small radius. For negative
curvature, Cai’s formula and the present formula give good
approximations of the exact results, whereas Tvedt’s formula
and Koyluoglu’s formula produce a large error for relatively
small radius (absolute value).

The variations of the computed second-order reliability in-
dices with respect to the number of random variables are
shown in Fig. 5, in which the first-order reliability index is
taken to be 2.0 and is depicted as a horizontal line in the figure.
The curves above the first-order reliability index show the re-
sults of the limit state surface convex to the origin (R = 10)
and those below it show the results of the limit state surface
concave to the origin (R = 210). From Fig. 5, one can find
that (1) the larger the number of random variables, the greater
the difference between the second-order and first-order relia-
bility indices, and the exact second-order reliability index is
approximately proportional to the number of random variables;
and (2) all the second-order reliability indices improve the
first-order reliability index to some degree. For small number
of random variables, all the second-order reliability indices
give good approximations of the exact results. When the num-
ber of random variables is large, for positive curvature, the
present formula gives very good approximations, and Koylu-
oglu’s formula and Breitung’s formula give relatively good
approximations for the exact results, while Tvedt’s formula
and Cai’s formula produce large errors. When the number of
random variables is larger than 16 for Cai’s formula and 30
for Tvedt’s formula, suitable results cannot be obtained be-
cause the failure probability computed by the two formulas is
beyond definition. For negative curvature, Cai’s formula and
the present formula give very good approximations of the ex-
act results, whereas Tvedt’s formula, Breitung’s formula, and
Koyluoglu’s formula produce large errors for a relatively large
number of random variables.

The variations of the second-order reliability indices with
respect to the first-order reliability index are shown in Fig. 6,
in which the number of random variables is taken to be 10.
The curves above the first-order reliability index show the re-
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FIG. 6. Variation of Reliability Index with First-Order Reliabil-
ity Index for Example 1

sults of the limit state surface convex to the origin (R = 5),
and those below it show the results of the limit state surface
concave to the origin (R = 25). From Fig. 6, one can see that
(1) the exact second-order reliability indices are approximately
proportional to the first-order reliability index, and all of the
second-order reliability indices obtained from each of the for-
mulas improve the first-order reliability index to some degree;
and (2) the present formula gives very good approximations
for the entire range of the first-order reliability indices for not
only positive curvature but also negative curvature. For posi-
tive curvature. Breitung’s formula and Tvedt’s formula provide
good results with the increase of the first-order reliability in-
dex, whereas Cai’s formula provides good results for small
first-order reliability indices but cannot provide appropriate re-
sults for large first-order reliability indices. For negative cur-
vature, all of the formulas except the present formula produce
large errors; Breitung’s formula and Tvedt’s formula cannot
provide appropriate results.

Investigation for General Parabolic Surface

The second example considers the following performance
function in standardized space, which has been used as the
fourth example by Der Kiureghian (1987). This function is
also a special form of (4) but is more general than (13).

n21
1 2G(U) = b 2 u 1 j a u (18)F n jO2 j=1

The sum of the principal curvatures of the limit state surface
for (18) can be readily obtained as Ks = an(n 2 1)/2 and the
corresponding average curvature radius is obtained as R = 2/
(na). The exact results used in the following investigations are
obtained by the inverse fast Fourier transformation (IFFT)
method (Zhao and Ono 1999).

Fig. 7 shows the relationship between curvature radius R
and the second-order reliability indices obtained using the
present formula, as well as the four formulas listed in Appen-
dix I, with comparison of the exact results, in which the first-
order reliability index is taken to be 2.0 and the number of
random variables is taken to be 8. From Fig. 7, one can see
that there is good agreement between the present formula and
Tvedt’s formula, both give the best approximations of the ex-
act results for a relatively large R (larger than 5) in this case.
Breitung’s and Cai’s formulas have significant errors when the
curvature radius is smaller than 10.

The variations of the second-order reliability index with re-
spect to the number of random variables are shown in Fig. 8,
in which the first-order reliability index is taken to be 2.0, and
the curvature radius is taken to be 5. From Fig. 8, one can see



FIG. 7. Relationship between Reliability Index and Curvature
Radius for Example 2

FIG. 8. Relationship between Reliability Index and Number of
Random Variables for Example 2

FIG. 9. Relationship between Reliability Index and First-Order
Reliability Index for Example 2

that only the proposed formula gives a good approximation of
the correct results when the number of random variables is
relatively large. Tvedt’s formula and Cai’s formula produce
significant errors for a large number of random variables in
this case.

The variations of the second-order reliability indices with
respect to the first-order reliability index are shown in Fig. 9,
where the number of random variables is taken to be 8 and
the curvature radius is taken to be 5. One can see that all of
the second-order reliability indices give good approximations
FIG. 10. Relationship between Reliability Index and Number of
Random Variables for Example 3

of the exact results for a large first-order reliability index. Cai’s
formula and Breitung’s formula produce significant errors for
a small first-order reliability index in this case.

Investigation for Spherical Surface

The third example considers the following performance
function in standardized space, which is the general case of
the practical examples used by Cai (1994) and Koyluoglu
(1994).

n

2 2G(U) = R 2 (u 2 l ) (19)j jO
j=1

The limit state surface of (19) is a hypersphere concave to
the origin with radius R and center at point (lj , j = 1, . . . , n).
y = G(U) is a random variable having the noncentral chi-
squared distribution, and the exact value of probability PF =
Prob{G(U) < 0} is computed directly using this distribution
(Sankaran 1959, 1963). The distance from origin to the spher-
ical center d is expressed as

n

2 2 2d = l = (R 2 b ) (20)i FO
i=1

The design point U* and the directional vector a at U* are
expressed as

b lF jU* = 2 l , j = 1, . . . , n ; a = 2 , j = 1, . . . , n (21)jH J H Jd d

from which the scaled Hessian matrix is obtained as

1
B = I (22)

R

When using previous SORM formulas, a rotation matrix H
should be established to obtain A in (2); A is then simplified
to A9 and the principal curvatures are obtained from the ei-
genvalue analysis of A9 using (6). The results are obtained as
k1 = k2 = ??? = kn21 = 1/R. When using the empirical reliability
index (17), the sum of the principal curvatures can be readily
obtained as ks = (n 2 1)/R without matrix rotation and eigen-
value analysis.

The variations of the second-order reliability indices with
respect to the number of random variables are shown in Fig.
10, in which the first-order reliability index is taken to be 3.0,
and curvature radius is taken to be 210. From Fig. 10, one
can see that for small number of random variables, all of the
formulas give good approximations of the exact results, but
only the present formula gives good approximations when the
JOURNAL OF ENGINEERING MECHANICS / JANUARY 1999 / 83



FIG. 11. Results of Reliability Index for Example 4

number of random variables is relatively large. Both Koylu-
oglu’s and Cai’s formulas are claimed to be accurate, because
the writers investigated the formulas only for the case of n =
3 (Koyluoglu and Nielsen 1994; Cai and Elishakoff 1994).

Investigation for Paraboloid with Unevenly
Distributed Curvatures

The fourth example considers the following performance
function in standardized space:

7
1 j 2G(U) = b 2 u 1 a u (23)F 8 jO2 j=1

where a = a factor with value from 21 to 1. Because a j

changes for different j, the paraboloid expressed by (23) has
unevenly distributed curvatures. The smaller the absolute value
of a, the more unevenly the curvature is distributed.

The variations of the second-order reliability indices with
respect to a are shown in Fig. 11, in which the first-order
reliability index is taken to be 2.0. The exact results are ob-
tained by IFFT method (Zhao and Ono 1999). From Fig. 11,
one can see that for a > 0, which implies that the curvatures
have the same signs, the present formula gives a better ap-
proximation compared to other formulas. For a < 0, which
implies that the curvatures have different signs, all of the for-
mulas including the present formula produce significant errors.

CONCLUSIONS

1. For practical application of the second-order reliability
method, a simple approximation has been suggested and
an empirical second-order reliability index proposed.

2. The second-order reliability index is approximately pro-
portional to the number of random variables and the first-
order reliability index.

3. All of the four formulas of SORM investigated in this
paper—Breitung’s formula, Tvedt’s formula, Koylu-
oglu’s formula, and Cai’s formula—work well for the
case of a large curvature radius or a small number of
random variables.

4. The empirical second-order reliability index gives the
best approximation of the exact results for a large range
of curvature radii, number of random variables, and first-
order reliability index. Furthermore, it can be easily cal-
culated with little additional effort after FORM, without
having to compute the rotational transformation of the
Hessian matrix or perform eigenvalue analysis.

5. For limit state surfaces having curvatures of different
signs, all of the formulas including the present one pro-
duce significant errors.
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APPENDIX I. PREVIOUS FORMULAS OF SORM

The investigations in this paper used the following four
kinds of SORM formulas, denoted as Breitung’s, Koyluoglu’s,
Cai’s, and Tvedt’s. These four formulas are derived to ap-
proximate the failure probability for the performance function,
(4).

Breitung’s Formula

Breitung (1984) has derived an asymptotic formula of the
failure probability which asymptotically approaches the exact
results as bF → ` with bF kj fixed.

n21

21/2P = F(2b ) (1 1 b k ) (24)f F F jP
j=1

Tvedt’s Formula

For moderate bF , Tvedt (1983) introduced a three-term ap-
proximation in which the last two terms can be interpreted as
the correction for Breitung’s formula.

n21

21/2P = F(2b ) (1 1 b k ) 1 A 1 A (25a)f F F j 2 3P
j=1

A = [b F(2b )2f(2b )]2 F F F

n21 n21

21/2 21/2? (1 1 b k ) 2 (1 1 (b 1 1)k ) (25b)F j F jHP P J
j=1 j=1

A = (b 1 1)[b F(2b ) 2 f(2b )]3 F F F F

n21 n21

21/2 21/2? (1 1 b k ) 2 Re (1 1 (b 1 i)k ) (25c)F j F jHP FP GJ
j=1 j=1

Koyluoglu’s Formula

Koyluoglu and Nielsen (1994) proposed three formulas, of
which the one-term approximation is the simplest and is
claimed to also have good accuracy.

21/2n21
f(b )F

P = F(2b ) 1 1 kf F jP S DF(2b )Fj=1

for k > 0, j = 1, 2, . . . , n 2 1j (26)
21/2n21

f(b )F
P = 1 2 F(b ) 1 2 kf F jP S DF(b )Fj=1

for k < 0, j = 1, 2, . . . , n 2 1j (27)

Cai’s Formula

Cai and Elishakoff (1994) introduce a series formula. The
three-term approximation is suggested for practical purposes.

P = F(2b ) 2 f(b )(D 1 D 1 D ) (28a)f F F 1 2 3

n21

D = l (28b)1 jO
j=1

n21 n21
1 2D = 2 b 3 l 1 l l (28c)2 F j j lS O O D2 j j=/ l

n21 n21 n21
1 2 3 2D = (b 2 1) 15 l 1 9 l l 1 l l l (28d)3 F j j l j l mS O O O D6 j j=/ l j=/ l=/ m

where lj = 1/2kj , j = 1, 2, . . . , n 2 1



APPENDIX II. INVESTIGATION OF DEFINITION OF
CURVATURE IN SORM

The investigation is conducted only for the case of three
dimensions. Function (5) can be expressed as (29) when
G9(X) = 0, which represents the limit state surface.

1 Tx = f (X9) = b 1 {X9} [A9]{X9} (29)n 2

where X9 = {x1, x2}, xn = x3.
According to the definition of principal curvature in differ-

ential geometry, the principal curvature is given by

2
­f ­f ­f

1 1 S D
­x ­x ­x1 1 21

[A9] 2 k = 0 (30)2
N ­f ­f ­f

1 1 S D
­x ­x ­x1 2 2

where

2 2
­f ­f

N = 1 1 1S D S DÎ ­x ­x1 2

This clearly differs from (6).
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APPENDIX IV. NOTATION

The following symbols are used in this paper:

A = scaled second-order derivatives of G(U) at U* in rotated
space;

B = scaled second-order derivatives of G(U) at U*;
bii = diagonal element of B;
G = performance function;
H = rotation matrix;
I = unit diagonal matrix;
kj = principal curvature at U*;

Ks = sum of principal curvatures of limit state surface;
n = number of random variables;

Pf = failure probability;
R = rotation matrix;
R = curvature radius;
U = standard, normal random variables;

U* = design point in u-space;
X = standard, normal random variables in rotated space;
Y = standard, normal random variables in rotated space;
a = directional vector at design point in u-space;

bF = first-order reliability index;
bs = second-order reliability index;

F(x) = standard, normal probability distribution with argument
x;

f(x) = standard, normal density distribution with argument x;
and

=G = gradient of G at U*.
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