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ABSTRACT: In the second-order reliability method, the Hessian matrix is used to construct a paraboloid ap-
proximation of the limit state surface and compute a second-order estimate of the failure probability. In this
paper, a practical point-fitting second-order reliability approximation is proposed, by which the explicit second-
order approximation of the performance function is obtained directly in standard normal space with neither the
computation of Hessian matrix nor the computation of gradients of the function. Once the point-fitted perfor-
mance function is obtained, the failure probability is estimated by the empirical second-order reliability index,
which is generally simple and works well compared to other second-order reliability method formulas. For
accurate computation of the failure probability, an IFFT method is proposed, from which the failure probability
is obtained conveniently using the Inverse Fast Fourier Transformation. The proposed methods are investigated
and their accuracy and efficiency are demonstrated using numerical examples.
INTRODUCTION

The ultimate goal in structural reliability analysis is to eval-
uate the probability content of part of an n-dimensional prob-
ability space. Difficulty in computing this probability has led
to the development of various approximation methods (Bjer-
ager 1991). Of interest here is the second-order reliability
method (SORM), wherein the limit state surface is approxi-
mated by a paraboloid in a transformed standard normal space
(Fiessler et al. 1979; Breitung 1984; Der Kiureghian et al.
1987, 1991; Tvedt 1988, 1990). There are two kinds of sec-
ond-order reliability approximations: curvature-fitting SORM
and point-fitting SORM.

In the curvature-fitting SORM, the approximated second-
order limit state surface is defined by matching its principal
curvatures to the principal curvatures of the limit state surface
at the design point. The principal curvatures of the limit state
surface are obtained as the eigenvalues of the rotational trans-
formed second-order derivative matrix (Hessian matrix) of the
performance function in standard normal space (Fiessler et al.
1979; Breitung 1984). For the paraboloid approximation, var-
ious formulas have been derived in closed form (Breitung
1984; Tvedt 1988; Koyluoglu and Nielsen 1994; Cai and Elis-
hakoff 1994). These formulas generally work well for cases
with large curvature radii and a small number of random var-
iables (Zhao and Ono 1999). However, applying the curvature-
fitting method in engineering requires the computation of the
Hessian matrix, which can be prohibitively costly when the
number of random variables is large and the performance func-
tion involves complicated numerical algorithms. Furthermore,
the rotational transformation and eigenvalue analysis of the
Hessian matrix are required and they are quite complicated for
practicing engineers. To avoid the rotational transformation
and eigenvalue analysis of the Hessian matrix, a simple ap-
proximation together with an empirical second-order reliability
index has been proposed (Zhao and Ono 1998) that is simpler
and more accurate than the previously mentioned formulas.
However, the computation of the Hessian matrix is still re-
quired.

Difficulty in computing the Hessian matrix has led to the
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development of another type of SORM approximation, the
point-fitting SORM method (Kiureghian et al. 1987, 1991), in
which an efficient algorithm is derived in order to determine
the principal curvatures without computing the Hessian matrix.
The major principal axis of the limit state surface and the
corresponding curvature are obtained in the course of obtain-
ing the design point; the remaining principal axes and curva-
tures can be obtained in the order of decreasing absolute cur-
vature, which coincides with the order of the importance of
the principal curvatures in SORM analysis. Avoiding compu-
tation of the Hessian matrix is a promising advance in the
application of SORM; however, some drawbacks exist in the
application of this method. For example, the current point-
fitting SORM uses certain gradient-based optimization algo-
rithms, and computing the gradients of the limit state surface
may also be prohibitively costly when the number of random
variables is large and the performance function involves com-
plicated numerical algorithms. In addition, because the current
point-fitting SORM uses a point-fitted paraboloid in rotated
standard normal space directly, the rotational transformation is
still complicated and the application to general cases is diffi-
cult, suggesting that approximation of the limit state surface
by a paraboloid at the design point may not be appropriate.

This paper presents an alternative point-fitting method for
second-order reliability approximation, in which the perfor-
mance function is directly point-fitted using a general form of
the second-order polynomial standard, normal random varia-
bles in an iterative manner. The proposed method does not
require computation of the Hessian matrix or the gradients of
the performance function. Once the point-fitted limit state sur-
face is obtained, the failure probability is conveniently ob-
tained using the empirical second-order reliability index with-
out any rotational transformation or eigenvalue analysis.
Furthermore, as a accurate method, an IFFT method is pro-
posed to compute the failure probability for the case of ex-
tremely small curvature radii or for the case in which the limit
state surface cannot be approximated by a paraboloid at the
design point. Numerical examples are used to confirm the ef-
ficiency and accuracy of the proposed methods.

SIMPLE POINT-FITTING SORM APPROXIMATION

In order to improve the current point-fitting SORM approx-
imation (Kiureghian et al. 1987, 1991), consider the limit state
surface in standard normal space expressed by a performance
function G(U). The present study defines the second-order sur-
face approximation in terms of a set of fitting points on the
limit state surface in the vicinity of the design point. These
points, 2n 1 1 in number, are selected along the coordinate
axes in standard normal space rather than in rotated normal
space. Along each axis uj, j = 1, . . . , n, two points having the
coordinates (U9*, 2 d) and (U9*, 1 d) are selected,* *u uj j



where U9* = k = 1, . . . , n except j} represents the co-{u*,k

ordinates of the design point along all the axes except the j-
axis, and d is a factor that represents the distance from the
design point to the fitting point. The point-fitted performance
function is expressed as a second-order polynomial of stan-
dard, normal random variables, including 2n 1 1 regression
coefficients.

n n

2G9(U) = a 1 g u 1 l u (1)0 j j j jO O
j=1 j=1

where a0, gj, and lj = 2n 1 1 regression coefficients.
Fitting the practical performance function G(U) by G9(U)

at the fitting points described above, the regression coefficients
a0, gj, and lj can be determined from linear equations of a0,
gj, and lj obtained at each fitting point.

Computation of the Hessian matrix corresponding to G(U)
may be difficult, but the matrix corresponding to G9(U) can
be computed quite easily. Once the point-fitted performance
function (1) is obtained, the Hessian matrix corresponding to
(1) can be readily obtained as

l ??? 012 ? ? ?B = ? ? ? (2)F G? ? ?u=G9u 0 ??? ln

where

n

2u=G9u = (3)*(g 1 2l u )Î j jO j
j=1

The sum of the principal curvatures and the average prin-
cipal curvature radius of the limit state surface at the design
point U* can be expressed (Zhao and Ono 1999) as

n

TK = b 2 a Ba (4)s jjO
j=1

n 2 1
R = (5)

Ks

where bjj, j = 1, . . . , n 2 1 = diagonal elements of B. a =
directional vector at design point U*.

Substituting (2) into (4), it follows that
n

2 1 2*K = l 1 2 (g 1 2l u ) (6)s j j jO F j G2u=G9u u=G9uj=1

With the aid of Ks and R expressed in (6) and (5), the failure
probability corresponding to the point-fitted performance func-
tion can be obtained by substituting (5) into the following
integration (Fiessler et al. 1979):

`

t
2P = F 2 b f (t) dt (7)F F xE S D n212R0

where

1 t(n23)/2
2f (t) = t exp 2 (8)x S Dn21 2n 2 1 (n21)/2G 2S D2

or by substituting (5) and (6) into the following empirical sec-
ond-order reliability index, which is an empirical closed-form
solution for (7) (Zhao and Ono 1998):

2(n21)/2[112K /10(112b )]s F
f(b )F21b = 2F F(2b ) 1 1S FF S D GRF(2b )F

K $ 0s (9a)
2.5Ks
b = 1 1 bS FS D22n 2 5R 1 25(23 2 5b )/RF

1 Ks
1 K 1 1 K < 0s sS D2 40 (9b)

where Ks = sum of principal curvatures of limit state surface
described in (6); R = average principal curvature radius de-
scribed in (5); n = number of random variables; bF = first-
order reliability index; and bS = second-order reliability index.

Although the procedure described above can be used to ob-
tain the second-order reliability index conveniently, without
computation of the Hessian matrix corresponding to G(U) and
without rotational transformation and eigenvalue analysis of
the Hessian matrix corresponding to G 9(U), implementing this
method requires the design point, which is not generally
known beforehand. Computation of the design point for G(U)
requires the gradients of the limit state surface, which may
also be prohibitively costly to compute when the number of
random variables is large and the performance function in-
volves complicated numerical algorithms. To avoid this prob-
lem, the design point will be obtained by the following iter-
ative point-fitting procedure in standard normal space using
the response surface approach (Bucher and Bourgund 1990;
Rajashekhar and Ellingwood 1993).

1. Select an initial central point Uc in standard normal space
(generally, the point corresponding to the mean value
point in original space is recommended).

2. Select fitting points along the coordinate axes. Along
each axis uj, j = 1, . . . , n, two points having the coor-
dinates ucj 2 d) and ucj 1 d) are selected, where(U9, (U9,c c

= {uck, k = 1, . . . , n except j} represents the coor-(U9c
dinates of the design point along all the axes except the
j-axis, and d is a factor which represents the distance
from the central point to the fitting point.

3. Transform the fitting points to the original space using
the Rosenblatt transformation, and fit the original per-
formance function by the performance function approx-
imation (1) at these points. The regression coefficients
included in (1) can now be obtained.

4. For the point-fitted performance function (1), conduct
FORM iteration and obtain the design point U* corre-
sponding to (1).

5. Substituting U* for Uc in step 2, repeat steps 2–4 until
convergence.

6. After obtaining the design point, the failure probability
or the second-order reliability index can be obtained us-
ing (7) or (9).

According to the experience of the authors, this procedure
generally converges after 3 to 6 iterations and is reasonably
accurate, as shown in the ensuing sections.

ACCURATE COMPUTATION OF SECOND-ORDER
RELIABILITY

Although the procedure described in the preceding section
is simple, computation of the failure probability can be used
only in the cases for which the limit state surface can be ap-
proximated by paraboloid, the assumption used in almost all
of the current SORM methods. Generally, for the case of a
relatively large curvature radius and a small number of random
variables, the failure probability is not sensitive to the kind of
limit state surfaces with a specified value of curvature radius,
number of random variables, and first-order reliability index
(Zhao and Ono 1997), and the formulas (7) and (9) work well.
In the case of an extremely small curvature radius and a large
number of random variables, and a limit state surface that can-
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not be approximated by a paraboloid, formulas (7) and (9)
produce significant errors, and an alternate method is required
for the accurate computation of failure probability. For this
purpose, an Inverse Fast Fourier Transformation (IFFT)
method, which uses the fact that the Probability Density Func-
tion (PDF) and the characteristic function of a random variable
can be expressed as a pair of Fourier transformations (Lin
1967; Sakamoto and Mori 1995), is suggested.

`

Q(t) = f (x)exp(itx) dt (10)E
2`

`

1
f (x) = Q(t)exp(2itx) dt (11)E2p 2`

where f (x) and Q(t) are the PDF and characteristic function of
a random variable x, respectively, and i = 21.Ï

The characteristic function corresponding to the point-fitted
performance function (1) can be explicitly obtained as (Tvedt
1990)

n 2 2exp(2t g /2(1 2 2itl ))j j
Q(t) = exp(ia t) (12)0 P

1 2 2itlj=1 Ï j

In particular, for the following performance function in the
parabolic approximation (Breitung 1984; Tvedt 1983; Der
Kiureghian et al. 1987, 1991; Hohenbichler et al. 1988; Koy-
luoglu and Nielsen 1994; Cai and Elishakoff 1994):

n21

2G(U) = 2(u 2 b ) 1 l u (13)n F j jO
j=1

the characteristic function is expressed as
n212t 1

Q(t) = exp(ib t)exp 2 (14)F S D P2 1 1 2itlj=1 Ï j

Using the discrete values Q(ts), s = 1, . . . , N, of (12) or
(14) evenly distributed in the interval of [t1, tN], where N =
number of discrete data and [t1, tN ] can be selected by evalu-
ating the effective range of Q(t), the discrete values of inverse
Fourier coefficients are readily obtained as Fr, r = 1, . . . , N,
using the IFFT, which has become a familiar engineering tool.
According to the definition of discrete Fourier transformation
and PDF, the discrete values of PDF can be obtained (see
Appendix I) as

t 2 tN 1
f (x ) = F exp(2it x ) for x $ 0 (15)r r 1 r r

2p NÏ

where

2p(r 2 1)
x = (16)r

t 2 tN 1

Because discrete values of f(x) with only positive values of
x are obtained, the failure probability for Prob{x < 0} can be
readily obtained by the numerical integration of the discrete
values of f (x).
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FIG. 1. Point-Fitted Limit State Surface for d = 0.2

N21
f (x ) 1 f (x )r r11

P ' 1 2 Dx (17)f O 2r=1

where

Dx = 2p/(t 2 t ) (18)N 1

EXAMPLES AND INVESTIGATIONS

Example 1: Investigation on Convergence
of Procedure

The object of the first example is to investigate the conver-
gence of the proposed procedure. Consider the following sim-
ple performance function that includes only two random var-
iables.

G(U) = 80 2 x 1 x (19)1 2

where x1 = normal random variable with mean value of m =
50 and standard deviation of s = 25; and x2 = lognormal ran-
dom variable with mean value of m = 80 and standard devi-
ation of s = 64. For comparison, the problem is first solved
using gradient-based optimization algorithms, and the design
point is obtained as (2.1334, 21.4000) in standard normal
space with the first-order reliability index of bF = 2.5518. Us-
ing differential geometry, the curvature radius is obtained as
R = 3.7072 and the central point of the tangent circle is ob-
tained as (5.2232, 23.4346) in standard normal space, as de-
picted by the thin solid line in Fig. 1. Using the integration
method, the failure probability is obtained as 4.020 3 1023

with the corresponding reliability index of b = 2.6504.
When the analysis is conducted using the proposed method,

the initial central point is taken to be the point transformed
from the mean value point, and the distance from the central
TABLE 1. Iterative Results for Example 1

Iteration
(1)

Central point
(2)

Point-fitted performance function
(3)

Design point
(4)

bF

(5)
R
(6)

bS

(7)

No. 1 (0, 0.352) G9(U) = 92.598 2 25u1 1 42.513u2 1 219.821u2 (2.802, 20.938) 2.9546 0.7395 3.2147

No. 2 (2.802, 20.938) G9(U) = 90.715 2 25u1 1 37.805u2 1 28.004u2 (2.100, 21.450) 2.5520 2.8039 2.6739

No. 3 (2.100, 21.450) G9(U) = 87.314 2 25u1 1 32.081u2 1 25.580u2 (2.150, 21.374) 2.5513 3.7459 2.6498

No. 4 (2.150, 21.374) G9(U) = 87.924 2 25u1 1 32.948u2 1 25.887u2 (2.121, 21.418) 2.5516 3.6955 2.6510

Exact values G(U) = 30 2 25u1 1 Exp(0.7033u2 1 4.1347) (2.133, 21.400) 2.5518 3.7072 2.6504



FIG. 2. Reliability Indices Affected by d

point to the fitting point is taken to be d = 0.2. Convergence
is obtained in four iterations with a tolerance of 0.0001. The
results obtained in each iteration are listed in Table 1, in which
column 1 is the number of iteration; column 2 is the central
point for each iteration; columns 3 and 4 show the point-fitted
performance functions and their corresponding design points,
respectively, obtained in each iteration; and columns 5, 6, and
7 show the first-order reliability index bF, the average prin-
cipal curvature radius R, and the empirical reliability index bS

corresponding to the obtained point-fitted performance func-
tion, respectively. From Table 1 one can see that, although the
results obtained in the first iteration are much different from
the exact results, when convergence is reached (the fourth it-
eration), the design point is obtained as U* = (2.121, 21.418)
with corresponding first-order reliability index bF = 2.5516,
which is in good agreement with the exact results U* = (2.133,
21.400) and bF = 2.5518. Applying formulas (5), (6), and (9)
to the point-fitted performance function obtained in the fourth
iteration, the average curvature radius is obtained as 3.6955,
and the failure probability is obtained as PF = 4.013 3 1023

with the corresponding reliability index of bS = 2.6510, which
are close to the exact results R = 3.7072, PF = 4.020 3 1023,
b = 2.6504.

The point-fitted limit state surfaces obtained during each
iteration are depicted in Fig. 1, in which the point-fitted limit
state surface obtained in the fourth iteration is not depicted
because it is almost identical to that obtained in the third it-
eration. Fig. 1 shows that the point-fitted limit state surface
gradually approaches the original limit state surface at design
point as the number of iterations increases. The tangent circle
at the design point of the point-fitted limit state surface ob-
tained in the fourth iteration is depicted by the thin dashed
line. This circle is nearly invisible because it almost com-
pletely coincides with that of the original limit state surface.
The central point of the circle is obtained as (5.2195,
23.4323), which is almost identical to the accurate central
point (5.2232, 23.4346).

In order to investigate the effects of the fitting points, the
previous problem is solved using different fitting points rang-
ing from d = 0.1 to d = 2.0 with an interval of 0.1. All com-
putations converged within six iterations, the first- and second-
order reliability indices obtained with different d are shown in
Fig. 2, and the corresponding curvature radii are shown in Fig.
3. From Fig. 2, one can see that the first- and second-order
reliability indices are only slightly affected by the fitting
points, except when d is very large. When d is larger than 1.0,
the first-order reliability index increased slightly with the in-
crease of d. In contrast, the second-order reliability index re-
mains almost unchanged. This occurs because, in these cases,
the curvature radius R also becomes large (see Fig. 3) and the
modification effect of R becomes weak. As an example of
large d, the point-fitted second-order surface obtained with d
= 1.5 is depicted in Fig. 4, which shows that the tangent circle
FIG. 3. Curvature Radius Affected by d

FIG. 4. Point-Fitted Limit State Surface for d = 1.5

(depicted by a thin dashed line) of the point-fitted limit state
surface does not closely approach that (depicted by a thin solid
line) of the original limit state surface. The approximating cur-
vature radius is obtained as R = 4.0305, which is very different
when compared with the exact value R = 3.7072. The first-
and second-order reliability index corresponding to the point-
fitted limit state surface are obtained as bF = 2.5562, bS =
2.6493, respectively, which are still close to the exact values
bF = 2.5518, bS = 2.6504.

Fig. 2 and Fig. 3 show that the value of d should be between
0.1 and 0.5 for acceptable accuracy.

Example 2: Investigation on Efficiency of
IFFT Method

Consider the following performance function in standard-
ized space, which has been used as the fourth example by Der
Kiureghian (1987). The relationships between the second-or-
der reliability index and curvature radius, number of random
variables, and first-order reliability index have been investi-
gated by Zhao and Ono (1999).

n21
1 2G(U) = b 2 u 1 jau (20)F n jO2 j=1

The real and imaginary parts of the characteristic function
are easily obtained as Fig. 5 and Fig. 6, respectively, for a =
0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5. As a by-product of the IFFT
method, the corresponding PDFs in Fig. 7 are easily obtained,
showing that the effective range of the PDF increases with the
increase of a.
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FIG. 7. PDF of Performance Function for Example 2

FIG. 6. Imaginary Part of Characteristic Function for Example
2

FIG. 5. Real Part of Characteristic Function for Example 2

The sum of the principal curvatures of the limit state surface
for (20) can be readily obtained as Ks = an(n 2 1)/2, and the
corresponding average curvature radius is obtained as R = 2/
na. Using R, n, bF as parameters, the failure probabilities ob-
tained using the IFFT method proposed in this paper are listed
in Table 2, with comparison of the results obtained using the
empirical formula (9) and those using Monte-Carlo Simulation
with 500,000 samples. The parameters bF, n, R are listed in
columns 1, 2, and 3, respectively; the reliability index b and
the corresponding failure probability PF obtained using the
IFFT method are listed in columns 4 and 5, respectively; those
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obtained using Monte-Carlo simulation are listed in columns
6 and 7; and those obtained using formula (9) are listed in
columns 8 and 9, respectively. From Table 1 one can see that
when the curvature radius is small (the shaded rows of R =
3.3, 2.5, 2.0 with bF = 2 and n = 8) or the number of random
variables is large (the shaded rows of n = 24, 30 with bF = 2
and R = 5), the errors in the empirical formula (9) become
significant. However, there is very good agreement between
the results obtained using the IFFT method and those obtained
using Monte-Carlo simulation with any value of curvature ra-
dius R, number of random variables n and first-order reliability
index bF. In other words, the proposed IFFT method can be
used to accurately compute the failure probability correspond-
ing to quadratic performance functions in normal space.

Example 3: Investigation on Effects of Noise

Consider the following performance functions that have
been used as example 1 and example 2 by Der Kiureghian
(1987):

G(X) = x 1 2x 1 2x 1 x 2 5x 2 5x (21)1 2 3 4 5 6

G(X) = x 1 2x 1 2x 1 x 2 5x 2 5x1 2 3 4 5 6

6

1 0.001 sin(1,000x )jO
j=1 (22)

Performance function (22) consists of (21) with artificial
noise terms added. The approximating performance function
obtained by the point-fitting approximation in this paper, the
average principal curvature radius obtained using formula (5)
and the second-order reliability index obtained using the em-
pirical formula (9) are listed in Table 3. From Table 3, one
can see that there are slight differences in the point-fitted per-
formance function and the second-order reliability index, that
is to say, the analysis results of the point-fitting approximation
proposed in this paper are slightly affected by the noise.

Example 4: Comparison with Updating Method

Consider the two performance functions used by Hohenbi-
chler and Rackwitz (1988), in which satisfactory results have
been obtained by combining Breitung’s formula with impor-
tance sampling:

n

G(X) = C 2 x (23)iO
j=1

n

G(X) = x 2 C (24)iO
j=1

where the xi, i = 1, . . . , n, are independently and identically
exponentially distributed with parameter l = 1. The exact re-
sult is known to be PF = FGa(C; n, l) with FGa the Gamma
(Erlang) distribution; (23) corresponds to the upper tail of FGa

and (24) corresponds to the lower tail of FGa.
In order to compare the results obtained using the proposed

method with those of Hohenbichler and Rackwitz’s updating
method (Hohenbichler and Rackwitz 1988; Fujita and Rack-
witz 1988), the exact value of b and the number of random
variables n are taken to be the same as those used by Hoh-
enbichler and Rackwitz. The computational results using the
proposed point-fitting method in this paper are listed in Table
4 for performance function (23) and in Table 5 for perfor-
mance function (24). Columns 1, 2, and 3 are the parameters
used by Hohenbichler (1988), where the values of C(b, n) are
provided for convenience of checking by readers. Columns 4,
5, 6, and 7 are the results given by Hohenbichler and Rack-
witz’s (1988), where bS represents the Breitung’s second-order



reliability index and bSI the updating reliability index using
SORM combined with importance sampling, and the sign of
the average curvature radius R has been corrected according
to the definitions in this paper. Columns 8, 9, and 10 show the
results obtained using the present method, where bF is ob-
tained using the point-fitting approximation, R is the average
principal curvature radius obtained from the point-fitted per-
formance function by formula (6) and (5), and bS is the em-
pirical second-order reliability index obtained using formula
(9). From Table 4 and Table 5, one can see that the first-order
TABLE 5. Computational Results in Example 4 for Performance Function (24)

Parameters

Exact b
(1)

n
(2)

C(b, n)
(3)

Hohenbichler and Rackwitz

bF

(4)
R
(5)

bS

(6)
bSI

(7)

Present Method

bF

(8)
R
(9)

bS

(10)

2.327 2 0.1484 2.0703 0.88 2.3305 2.3260 2.0712 0.8799 2.3420
2.327 5 1.2786 1.6837 1.96 2.2985 2.3292 1.6844 1.9620 2.3497
2.327 10 4.1291 1.3186 3.26 2.2225 2.3468 1.3192 3.2638 2.3362
2.327 20 11.080 0.8411 5.14 2.0474 2.3284 0.8417 5.1427 2.2967
3.722 2 0.0141 3.4692 0.57 3.7313 3.7185 3.4724 0.5748 3.7449
3.722 5 0.4433 3.0695 1.45 3.7225 3.7223 3.0705 1.4527 3.7709
3.722 10 2.1945 2.6921 2.64 3.6795 3.7410 2.6952 2.6440 3.7734
3.722 20 7.4348 2.2087 4.44 3.5667 3.7273 2.2116 4.4478 3.7435
4.756 2 0.0014 4.5138 0.44 4.7675 4.7533 4.5163 0.4466 4.7802
4.756 5 0.1686 4.1033 1.17 4.7636 4.7567 4.1059 1.1734 4.7884
4.756 10 1.2750 3.7178 2.25 4.7436 4.7772 3.7203 2.2580 4.7991
4.756 20 5.3594 3.2275 3.98 4.6621 4.7653 3.2300 3.9837 4.8186

TABLE 4. Computational Results in Example 4 for Performance Function (23)

Parameters

Exact b
(1)

n
(2)

C(b, n)
(3)

Hohenbichler and Rackwitz

bF

(4)
R
(5)

bS

(6)
bSI

(7)

Present Method

bF

(8)
R
(9)

bS

(10)

2.327 2 6.4303 2.5413 23.56 2.2419 2.3393 2.5417 23.5567 2.3597
2.327 5 11.607 2.8890 24.74 2.1008 2.2947 2.8896 24.7420 2.3357
2.327 10 18.786 3.2391 26.08 1.8994 2.3228 3.2397 26.0792 2.3089
2.327 20 31.849 3.7088 27.97 1.4845 2.3025 3.7094 27.9758 2.3186
3.722 2 11.769 3.9177 24.71 3.6542 3.7272 3.9208 24.7141 3.7491
3.722 5 17.797 4.2545 25.81 3.5460 3.6921 4.2574 25.8165 3.7281
3.722 10 26.211 4.6007 27.10 3.3998 3.7145 4.6036 27.1015 3.7272
3.722 20 41.052 5.0685 28.95 3.1260 3.7005 5.0714 28.9554 3.7310
4.756 2 16.702 4.9416 25.62 4.6987 4.7603 4.9441 25.6205 4.7737
4.756 5 23.447 5.2697 26.66 4.6045 4.7292 5.2721 26.6584 4.7850
4.756 10 32.728 5.6124 27.90 4.4797 4.7485 5.6149 27.8979 4.7829
4.756 20 48.847 6.0785 29.71 4.2539 4.7373 6.0809 29.7132 4.8073

TABLE 3. Effects of Noise for Example 3

Function
(1)

Point-fitted performance function
(2)

bF

(3)
R
(4)

bS

(5)

Eq. (21) G9(u) = 273.08 1 11.91u 1 23.81u 1 23.81u 1 11.91u 2 54.82u 2 51.00u1 2 3 4 5 6
2 2 2 2 2 21 0.584u 1 1.147u 1 1.147u 1 0.584u 2 17.91u 2 12.08u1 2 3 4 5 6

2.3483 233.1704 2.2732

Eq. (22) G9(u) = 273.11 1 11.92u 1 23.81u 1 23.81u 1 11.92u 2 54.90u 2 50.94u1 2 3 4 5 6
2 2 2 2 2 21 0.610u 1 1.147u 1 1.147u 1 0.610u 2 17.88u 2 12.11u1 2 3 4 5 6

2.3483 233.2969 2.2734

TABLE 2. Comparison of Results Obtained by IFFT and MCS for Example 1

Parameters

bF

(1)
n

(2)
R
(3)

IFFT

b
(4)

PF

(5)

Monte-Carlo

b
(6)

PF

(7)

Eq. (9)

b
(8)

PF

(9)

0.0 8 5.0 0.642 2.604 3 1021 0.643 2.603 3 1021 0.651 2.576 3 1021

0.4 8 5.0 1.019 1.541 3 1021 1.019 1.541 3 1021 1.005 1.574 3 1021

1.0 8 5.0 1.588 5.617 3 1022 1.589 5.603 3 1022 1.578 5.728 3 1022

1.8 8 5.0 2.352 9.338 3 1023 2.339 9.662 3 1023 2.354 9.291 3 1023

2.6 8 5.0 3.121 9.008 3 1024 3.123 8.941 3 1024 3.132 8.689 3 1024

2.0 2 5.0 2.083 1.862 3 1022 2.083 1.864 3 1022 2.081 1.871 3 1022

2.0 4 5.0 2.241 1.252 3 1022 2.240 1.255 3 1022 2.241 1.253 3 1022

2.0 6 5.0 2.394 8.331 3 1023 2.396 8.302 3 1023 2.396 8.287 3 1023

2.0 24 5.0 3.650 1.313 3 1024 3.648 1.320 3 1024 3.684 1.149 3 1024

2.0 30 5.0 4.032 2.764 3 1025 4.029 2.801 3 1025 4.085 2.206 3 1025

2.0 8 10.0 2.307 1.051 3 1022 2.308 1.051 3 1022 2.305 1.057 3 1022

2.0 8 5.0 2.544 5.482 3 1023 2.541 5.530 3 1023 2.548 5.414 3 1023

2.0 8 3.3 2.731 3.155 3 1023 2.726 3.210 3 1023 2.758 2.907 3 1023

2.0 8 2.5 2.885 1.958 3 1023 2.886 1.950 3 1023 2.930 1.694 3 1023

2.0 8 2.0 3.014 1.287 3 1023 3.026 1.240 3 1023 3.089 1.003 3 1023
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reliability index bF and the average principal curvature radius
R obtained by the point-fitting approximation are in good
agreements with those of Hohenbichler and Rackwitz’s. Fur-
thermore, although very simple, the empirical second-order re-
liability index bS in column 10 agrees with the updating sec-
ond-order reliability index bSI in column 7. In addition, both
of these reliability indices are significantly more accurate than
Breitung’s second-order reliability index bS in column 6 and
can be used as approximations of the exact reliability index
listed in column 1.

CONCLUSIONS

For practical application of SORM, an alternative point-fit-
ting approximation is proposed. The limit state surface is
approximated by a point-fitted second-order surface in stan-
dard normal space that does not require computation of the
Hessian matrix or the gradients of the performance function.

In order to compute the second-order reliability accurately,
an IFFT method is proposed. This gives accurate failure prob-
abilities corresponding to quadratic performance functions in
standard normal space conveniently. As a by-product of the
IFFT method, and if necessary, the PDF corresponding to the
performance function can be easily obtained.

After obtaining the point-fitted performance function, the
second-order reliability index is conveniently obtained using
the empirical reliability index, which is generally reasonable.
For the case of an extremely small curvature radius or the case
when the limit state surface is difficult to be approximated by
a parabolic surface, the IFFT method can be used to compute
the failure probability accurately.

It should be noted that the method proposed in this paper
can be used only for limit state surfaces having only one de-
sign point, a restriction that also applies to other FORM/
SORM methods. Otherwise, local convergence may occur and
error results may be yielded.

Another problem that needs to be mentioned is that, al-
though the ranges of parameters R, n, and bF for which the
simple approximation and empirical reliability index are ac-
curate are much larger than those of other SORM formulas,
an understanding of these numerical ranges in detail is impor-
tant because it can help us to judge when the IFFT method
may be used. Further study in this area is needed.

APPENDIX I. DERIVATION OF (15) AND (16)

Corresponding to the Fourier transformation pair in (10) and
(11), the pair of discrete Fourier transformation used in FFT
and IFFT is defined as (Wolfram 1996)

N
1 2pi(r 2 1)(s 2 1)

Q = F exp (25)s rO F GNN r=1Ï
N

1 2pi(r 2 1)(s 2 1)
F = Q exp 2 (26)r sO F GNN s=1Ï

where N = number of discrete data, Qs, s = 1, . . . , N, = Fourier
coefficients corresponding to Fr, r = 1, . . . , N, or Fr, r = 1,
. . . , N, = inverse Fourier coefficients corresponding to Qs, s
= 1, . . . , N.

For the discrete values Q(ts), s = 1, . . . , N, of (12) or (14)
evenly distributed in the interval of [t1, tN], the discrete values
of the PDF can be obtained as (27) from (11):

N
1

f (x ) = Q(t )exp(2it x )Dt (27)r s s rO2p s=1

where Dt = (tN 2 t1)/N.
Substituting ts = t1 1 Dt(s 2 1) into (27), it follows that
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Dt

f (x ) = exp(2it x ) Q(t )exp[2iDt(s 2 1)x ] (28)r 1 r s rO2p s=1

Using the following relationship:

x = x 1 Dx(r 2 1) (29)r 1

2p
Dx = (30)

t 2 tN 1

and making x1 = 0, one can obtain

2p(r 2 1)
x = (31)r

t 2 tN 1

Substituting (31) into (28), it follows that
N

t 2 t 2i2p(s 2 1)(r 2 1)N 1
f (x ) = exp(2it x ) Q(t )expr 1 r sO F G2pN Ns=1

(32)

Comparing (31) with (26), it follows that:

t 2 tN 1
f (x ) = F exp(2it x ) for x $ 0 (33)r r 1 r r

2p NÏ

where Fr, r = 1, . . . , N = inverse Fourier coefficients for data
Q(ts), s = 1, . . . , N, they can be conveniently obtained from
IFFT.

Because x1 is made to be 0 here, only f(xr) for xr $ 0 can
be obtained using (33).

As a reference, for discrete values f(xr), r = 1, . . . , N,
evenly distributed in the interval of [x1, xN], the discrete values
of the characteristic function can be obtained similarly as

x 2 xN 1
Q(t ) = Q exp(it x ) for t $ 0 (34)s s s 1 s

N

where Qs, s = 1, . . . , N = Fourier coefficients for data f (xr), r
= 1, . . . , N, they can be conveniently obtained from FFT.
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APPENDIX III. NOTATION

The following symbols are used in this paper:

a0 = regression coefficient in point-fitted performance func-
tion;
B = scaled second-order derivatives of G(U) at U*, i.e., Hes-
sian matrix;

bjj = diagonal elements of B;
Fr = inverse Fourier transformation coefficients obtained by

IFFT;
f (x) = probability density function with argument x;

G = performance function;
G9 = point-fitted performance function;

i = imaginary unit, i = ;21Ï
Ks = sum of principal curvatures of limit state surface;
N = number of data used in IFFT method;
n = number of random variables;

PF = failure probability;
Qs = Fourier transformation coefficients obtained by FFT;

Q(t) = characteristic function of random variable;
R = average principal curvature radius;
U = standard normal random variables;

Uc = central point;
U* = design point in u-space;

a = directional vector at design point in u-space;
bF = first-order reliability index;
bS = second-order reliability index;

F(x) = standard normal probability distribution with argument x;
f(x) = standard normal density distribution with argument x;

gj = regression coefficients in point-fitted performance func-
tion; and

lj = regression coefficients in point-fitted performance func-
tion.
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