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Abstract: In the second-order reliability method~SORM!, the failure probability is generally estimated using a parabolic approxima
of a performance function. In the present paper, the moment properties of a second-order approximation of performance fun
investigated, and a moment approximation for a second-order reliability method and a simple second-order third-moment reliabi
are proposed for the estimation of failure probability corresponding to both the simple and general parabolic approximations. Bas
property that the parabolic approximation approaches a unit normal random variable, the ranges of three parameters are inves
number of variables, the principal curvature, and the first-order reliability index. A simple analytical judgment formula is derived
can help us judge when the first-order reliability method is sufficiently accurate and when the SORM is required. A simple seco
second-moment reliability index is also proposed for problems with relatively small principal curvatures. Through some nu
examples, the simplicity and accuracy of the second-order second- and third-moment reliability indices are demonstrated.
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Introduction

A fundamental problem encountered in structural reliabil
theory is the computation of failure probability described as
multifold probability integral. The difficulty in computing this
probability has led to the development of various approximat
methods~Ang and Tang 1984!. Of interest here is the second
order reliability method~SORM!, which is usually used to im-
prove the accuracy of the first-order reliability method~FORM!
when the performance function has strong nonlinearity and
first-order approximation is not sufficiently accurate. In t
SORM, the limit state surface is approximated by a second-o
surface at the design point in transformed standard normal sp
and the failure probability is usually estimated using a parab
surface. Two such approximations have been developed. The
is the general parabolic approximation, which is expressed
~Breitung 1984!

GS~U!5bF2un1
1

2 (
j 51

n21

kj j j
2 (1)

whereuj , j 51, . . . ,n, are standard normal random variables a
kj , j 51, . . . ,n21, are principal curvatures that are determin
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as the eigenvalues of a matrix havingn21 columns andn21
rows approximately transformed from the scaled Hessian ma
~Breitung 1984! at the design point obtained by the FORM.bF is
the first-order reliability index.

The second approximation is the simple parabolic approxim
tion, which is expressed as

GS~U!5bF2un1
1

2R (
j 51

n21

uj
2 (2)

~Zhao and Ono 1999b! whereR5average principal curvature ra
dius which can be obtained without rotational matrix transform
tion or eigenvalue analysis of the scaled Hessian matrix.n is the
number of random variables.

For the general parabolic approximation, numerous stud
have contributed to the development of approximations of clo
form. Breitung ~1984! derived an asymptotic formula that ap
proaches the exact failure probability asbF→` in which bFki is
fixed. A Taylor series expansion in closed form was derived
Cai and Elishakoff~1994!. The formula can be interpreted as
moment formula using the first few moments ofGS aboutbF .

For the simple parabolic approximation, an empirical seco
order reliability index corresponding to Eq.~2! was given by
Zhao and Ono~1999b,c!. although the applicable ranges of th
three parameters, i.e.,n, R, and bF , for the empirical second-
order reliability index are larger than those in other SORM f
mulas of closed form, the index is an empirical formula and h
entirely different forms for positive and negative curvature rad

In the present paper, the moment properties of the seco
order approximation of the performance function are investiga
Using the fact that the parabolic approximation approaches a
mal random variable, a moment approximation of second-or
reliability and simple second-order, second- and third-moment
liability indices are proposed.
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Second-Order Third-Moment Reliability Method

Second-Order Third-Moment Reliability Index for
Simple Parabolic Approximation

In order to derive the second-order third-moment method, we
investigate the moment properties of the simple parabolic per
mance function. Using the definition of the probability mome
the first three central moments forGS expressed in Eq.~2! are
obtained as

mS5bF1
n21

2R
, sS

2511
n21

2R2
, a3S sS

35
n21

R3
(3)

where mS and sS5mean value and standard deviation of t
second-order performance functionGS(U), respectively; and
a3S5third dimensionless central moment.

From Eq.~3!, it can be seen thata3S rapidly approaches 0 asR
increases. Becausea3S50 is a moment property of a norma
random variable, this implies that the simple parabolic appro
mation rapidly converges to a normal random variable asR in-
creases. In order to confirm this assumption, therth cumulantKr

of Eq. ~2! is obtained as

Kr5
~r 21!! ~n21!

2Rr
for r .2 (4)

~see the Appendix!. Eq. ~4! shows thatKr rapidly approaches 0
with increase inR. In other words,GS satisfies the prerequisite o
the Cornish-Fisher expansion~Stuart and Ord 1987!.

A standardized random variablexs5(GS2mS)/sS can be ap-
proximately transformed to a standard normal random variablu,
using the following first polynomial of the inverse Cornish-Fish
expansion~Stuart and Ord 1987!:

u5xs2
1

6
a3S~xs

221! (5)

Since

Prob@GS<0#5ProbFxs<2
mS

sS
G

5Prob@xs<2bSOSM# (6)

the reliability index corresponding to the simple parabolic a
proximation is obtained as

bSOTM5bSOSM1
1

6
a3S~bSOSM

2 21! (7)

where

bSOSM5
mS

sS
5

bF1~n21!/2R

A11~n21!/2R2
(8)

Since the third and second moments are used in Eqs.~7! and
~8!, respectively, they are referred to as the second-order th
moment~SOTM! reliability index and the second-order secon
moment ~SOSM! reliability index, respectively. In particular
when a3S50, Eq. ~7! degenerates tobSOTM5bSOSM. When the
curvature radius is sufficiently large,sS approaches 1 anda3S

will approach 0, and then the SOTM and SOSM reliability indic
degenerate tobSOTM5bSOSM5bF .
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Second-Order Third-Moment Reliability Index for
General Parabolic Approximation

For the general parabolic approximation, therth cumulantKr is
given as

Kr5
~r 21!!

2 (
j 51

n21

kj
r for r .2 (9)

~see the Appendix!. Eq. ~9! shows thatKr rapidly approaches 0
with decreasing( j 51

n21kj
r . This implies that the general parabol

approximation rapidly converges to a normal random variable
( j 51

n21kj
r decreases. In other words, the general parabolic appr

mation also satisfies the prerequisite of the Cornish-Fisher ex
sion. Substituting the first three moments of the general parab
approximation into Eq.~7!, the SOTM reliability index for the
general parabolic approximation can easily be obtained. The
three central moments of Eq.~1! are given by

mS5bF1
1

2 (
i 51

n21

k
i
, sS

2511
1

2 (
i 51

n21

ki
2

(10)

a3SsS
35 (

i 51

n21

ki
3

The SOSM reliability index for the general parabolic appro
mation is simply expressed as

bSOSM5
mS

sS
5

bF1
1

2 (
i 51

n21

ki

A11
1

2 (
i 51

n21

ki
2

(11)

Applicable Range of First-Order Reliability Method

The problem of the accuracy of the FORM has been examined
many studies through a large number of examples~e.g., Der Ki-
ureghian and De Stefano 1991!. However, detailed reports of th
parameter ranges for which it is sufficiently accurate are rare.
empirical investigation was conducted but under only one leve
accuracy~Zhao and Ono 1999a!. Using the SOSM and SOTM
reliability indices presented in this paper, the applicable range
the FORM can be obtained analytically.

Since the FORM is accurate only in cases where the curva
radius is very large, in the range ofR where the accuracy of the
FORM was investigated, the SOSM reliability index is suf
ciently accurate. As shown in Eq.~3!, the standard deviationsS

and the third dimensionless central momenta3S approach 1 and
0, respectively, as the curvature radiusR increases, and therefor
the second-order reliability indexbS used in the investigation o
the applicable range for FORM can be expressed as

bS5bF1
1

2
KS5bF1

n21

2R
(12)

whereKS5total principal curvature of the limit state surface
the design point.

Using ubS2bFu/bS<g as a criterion for the first-order reli
ability index to judge whether the FORM is sufficiently accura
the range of the average curvature radius or the sum of the p
cipal curvature can be given as
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uRu>
n21

2gbF
or uKSu<2gbF (13)

whereg is the tolerance error of the FORM.
Using Eq.~13!, the applicable range for which the FORM

sufficiently accurate can be judged quite conveniently. For
ample, ifg is taken to be 2%, thenuKSu<0.04bF is necessary, and
furthermore, forn55, uRu>100/bF is also necessary.

Similarly, for the general parabolic approximation, the seco
order reliability indexbS used in the investigation of the appl
cable range for the FORM can be expressed as

bS5bF1
1

2 (
i 51

n21

ki (14)

and the applicable range for the FORM can easily be expresse

uKSu5U(
i 51

n21

kiU<2gbF (15)

Numerical Examples

Investigation for General Paraboloid with Unevenly
Distributed Curvatures

The first example considers the following performance funct
in standard normal space:

G~U!5bF2u81
1

2 (
j 51

7

ajuj
2 (16)

wherea is a factor having a value from20.4 to 0.4. Becauseaj

changes according toj, the paraboloid expressed by Eq.~16! pos-
sesses unevenly distributed curvatures. For this example inv
gated by Zhao and Ono~1999b!, none of the currently used
SORM formulas, including the empirical second-order reliabil
index, gave satisfactory results.

Using Eq.~15!, the range ofKS for which the FORM is accu-
rate can be readily obtained asKS<0.08 forbF52 andg52%.
The variations ofKS with respect toa are shown in Fig. 1~a!, in
which the shadow region indicatesKS for which the error ofbF is
less thang52%. From Fig. 1~a!, it can be seen that the absolu
value of KS increases as the absolute value ofa increases, and
enters the shadow region for which the error ofbF is less than
g52% when20.085,a,0.075. At the critical values ofa5
20.085 and 0.075, the corresponding valuesbSOSM

51.9573, 2.0377 andbSOTM51.9570, 2.0379, respectively, ar
obtained. Once can see that thebSOSM value is almost equal to
bSOTM, and the differences betweenbF and bSOTM are aboutg
52%. This implies that the assumption used in deriving Eqs.~13!
and~15! was appropriate and that Eqs.~13! and~15! can be used
to estimate the applicable range of the FORM.

The variations of the SOSM reliability index obtained usi
Eq. ~11! and the SOTM reliability index obtained using Eqs.~7!
and ~11! are depicted in Fig. 1~b! with a comparison of the em
pirical second-order reliability index and the exact results
tained by the inverse fast Fourier transformation~IFFT! method
~Zhao and Ono 1999c!. Fig. 1~b! shows that fora.0, implying
that the curvatures have the same signs, both the empirical
the SOTM reliability indices provide good approximations of t
exact reliability index. One can also see that the SOSM reliab
index produces significant errors with increase ofa, since KS

increases witha as shown in Fig. 1~a!. For a,0, implying that
s

i-

d

the curvatures have different signs and that the total princ
curvature is negative, the SOTM reliability index provides go
approximation of the exact reliability index while the empiric
reliability index produces significant errors. SinceKS is quite
small for a,0 as shown in Fig. 1~a!, the SOSM reliability index
also provides good approximation of the exact reliability inde
The results of this example imply that the proposed SOTM r
ability index can be applied to problems with unevenly distribut
principal curvatures.

Second-Order Reliability Analysis of Frame Structure

The second example considers a six-story, two-bay frame st
ture that was introduced as Example 5 by Der Kiureghian and
Stefano~1991!, to examine the efficiency of the SORM for
problem with a large number of random variables. The struct
is assumed to be elastic, but geometric nonlinearity due to
P-D effect is considered. The problem is defined by 99 rand
variables which include all nodal loads and individual memb
properties. With the aid of the first six principal curvatures p
vided by Der Kiureghian and De Stefano~1991! using their point
fitting SORM, the general parabolic approximations of the pro
lems with theP-D effect are expressed as

GS51.9712u71 1
2 ~20.3038u1

220.164u2
220.0978u3

2

20.0521u4
220.0318u5

210.0187u6
2! (17)

where the first term 1.971 in Eq.~17! is the first-order reliability
index corresponding to a failure probability of 0.02435.

Fig. 1. Variation of reliability index and principal curvature fo
Example 1
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Using Eq. ~17!, the total principal curvature can be readi
obtained asKS520.6308. Using Eq.~15!, the range ofKS for
which the FORM is adequate can be obtained asuKSu<0.0788 for
g52%. One can easily understand that the error of the FO
for this problem will be much larger thang52%. The second-
order probability estimate given by Der Kiureghian and De S
fano ~1991! is 0.05508 corresponding to a reliability index
1.597.

For the general parabolic approximation given in Eq.~17!, the
first three moments are readily obtained asmS51.656, sS

51.033, anda3520.0305, and the SOSM and SOTM reliabilit
indices are 1.603 and 1.595, which correspond to failure pr
abilities of 0.0544 and 0.0553, respectively. One can see tha
SOTM reliability index is in good agreement with the secon
order probability estimates of Der Kiureghian and De Stefa
~1991!. Sincea3 is quite small, the SOSM reliability index als
provides a good result.

Using the simple parabolic approximation for Eq.~17!, the
average curvature radius is29.551, the first three moments a
mS51.656,sS51.0164, anda3520.00664, and the SOSM an
SOTM reliability indices are 1.629 and 1.627, which correspo
to failure probabilities of 0.0516 and 0.0519, respectively. O
can see that both the SOSM and SOTM reliability indices us
the simple parabolic approximation provide comparable res
with those using the general parabolic approximation.

Conclusions

1. The parabolic approximation of a performance function
proaches a normal random variable as the curvature ra
increases.

2. The proposed simple SOSM and SOTM reliability indic
have the same form for both negative and positive princi
curvatures, and are effective for both simple and gen
parabolic approximations of a performance function.

3. The ranges of the three parameters for which the FORM
sufficiently accurate were investigated and a simple ana
cal judgment formula was derived for use in determini
when the FORM is sufficiently accurate and when t
SORM is required.
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Appendix: Cumulants of Parabolic Approximations

For the simple parabolic approximation, the characteristic fu
tion is given by

Q~ t !5exp~ ibFt !expS 2
t2

2 D S 12
i t

RD 2~n21!/2

(18)

The expansion of ln@Q(t)# is readily given as

ln@Q~ t !#5bF~ i t !1
1

2
~ i t !21

n21

2 (
r 51

`
~ i t !r

rRr
(19)

Since therth cumulantKr is the coefficient of (i t ) r /r ! in
ln@Q(t)#, Kr is easily obtained as Eq.~4!.

Similarly, for the general parabolic approximation, the expa
sion of ln@Q(t)# is given as

ln@Q~ t !#5bF~ i t !1
1

2
~ i t !21

1

2 (
r 51

`
1

r S (
r 51

`

kj
r D ~ i t !r (20)

Kr is easily obtained as Eq.~9!.
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