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The subject of failure mechanism is of much importance not only for structural reliability analysis but also for structural design. In the

present paper the preferable and undesirable failure modes in aseismic design of steel frame structures are analyzed, and the failure

probabilities of the story mechanisms of frame structure are investigated through both computational and theoretical analysis. The story

mechanisms are classified into three types: upper collapse pattern, middle collapse pattern and lower collapse pattern. It is found that: the

upper story mechanism with a relatively smaller number of failure stories is less likely to develop; for middle story mechanisms with an

identical number of failure stories, the reliability index increases with the increase of the number of intact stories below the failure stories of

structure; and the occurrence probability of lower story mechanism is always higher than that of middle story mechanisms with the same

number of failure stories.

Keywords: frame structure, story mechanism, failure probability, reliability analysis.

TR B, BRAETE, BOERR, (SRR

1. INTRODUCTION

Failure mechanisms of frame structures are generally concerned not only
in structural reliability analysis but also in structural design. In deterministic
design of frame structures, some preferred failure modes are often selected
and the strength of structural members are designed according to the
strength requirements of selected failure modes. In reality, however, the
designed - structure may collapse unexpectedly according to some
undesirable failure modes due to the uncertainties in member strength and
external load™ ®. Since it is impossible to absolutely ensure the structure
collapses according to the designed failure mode in deterministic meaning,
it is essential to identify the likely failure modes and understand the order in
which they are likely to occur.

Many studies on the collapse modes of frames have been performed so
far, and basically either the deterministic way or the probabilistic way was
employed in the analysis. In the studies of deterministic way, Nakashima et
al. investigated earthquake responses of steel moment frame and the effect
of column over-design factor (COF) on the formation of specific failure
modes® . In a research on the optimum elastic limit strength distribution of

structural members by Ogawa”®

, it was indicated that the plastic hinges
tend to form in more stories from the first story with the increase of the
COF, and to ensure an entire beam-hinging pattern, a quite high COF is
required. Akiyama” and Ogawa et al.” each.proposed a distribution law to
predict the damage distribution along the height of frame structure, and the
analysis on the effect of the strength and stiffness of structural members on
the formation of each collapse types was conducted in Akiyama’s research.
As for the studies in probabilistic way, the method of identifying
stochastically dominant failure modes by Zimmerman” is to identify the
failure modes based on their contribution to the system probability of

failure after getting the solution of a series of stochastic mathematical

programs; Ang and Ma'® developed a method to find the stochastically
relevant mode directly by solving a nonlinear optimization problem, which
was performed to find the minimal reliability index; Ohi'"” developed the
stochastic limit analysis method, which is one of the mathematical
programming techniques to obtain the likely failure modes in relatively
short computation time.

In the present paper, the preferable and undesirable failure modes of
frame structures are investigated first, and the followed examination
focuses particularly on story mechanism, one kind of failure pattern of
frame that should be avoided during aseismic excitation. The probabilistic
6rders of story mechanisms of frame structures designed under a certain
reliability level are investigated through computing and comparing their
reliability indices. The likely story mechanisms of steel frame structures are
identified.

2. BASIC ASSUMPTIONS

For the ductile frame structures considered in this paper, all the
computations are conducted on the basis of the following commonly used
assumptions:

e Frame structures have an elastic-plastic behavior. The failure of a
section means the imposition of a hinge and an artificial moment at this
section.

e Within the structural parameters, only the member strength is
considered as a random variable, the others are assumed to be
deterministic for a specific structure.

o Geometrical second-order and shear effects are neglected. The effect of
axial forces on the reduction of moment capacities is also neglected.

o The stationary earthquake load inverse triangularly distributed along the
height of the structure is adopted in the computation.

* Assoc. Prof,, Nagoya Institute of Technology, Dr. Eng.
** Graduate Student, Nagoya Institute of Technology, M. Eng.
*** Prof., Nagoya Institute of Technology, Dr. Eng.

Sl B TR TEYI BRI - T
FHELER L AT RRH Akt - Lis
AR TR AP TG Bt - T



My M, M,
M, Me M, Mooy [Me
M, M. M, Mgy M
M, M, My
BE B3 . BB

Fig. 1. 3-story-3-bay Frame Subjected to Earthquake
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Fig. 2. The Most Likely Failure Modes for a 3-story-3-span Frame

3. INVESTIGATION OF FAILURE LEVELS
Consider a 3-story-3-bay frame structure subjected to triangularly
distributed earthquake load, as shown in Fig. 1, in which all the
column-beam nodes are designed with the same COF (denoted by variable
“Co/’) value, the member strengths can be designed according to Eq. (1).
iy =20y, Beg=Cortty, Hey=2Corlp (1)
where u, = the mean plastic moment strength of beam of top floor, u,; = the
mean moment strength of beam below top floor, u.; = the mean plastic
moment strength of exterior column, and y.; = the mean moment strength of
interior column. In all the computations within the present paper the mean
plastic moment strength of top beams of frame structures are assumed to be
104.1 kN m. Since the earthquake load is inverse triangularly distributed,
the mean value of load applied on each floor of the structure is in

proportion, namely,
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(b) Lower Collapse Type

Upj = jup @)
where u,; = the mean value of load acting on the jth floor, and u, = the
mean value of load acting on the first floor, that is p,=p,:.

All the stochastic variables are assumed to obey a lognormal distribution,
and the coefficients of variation are defined by ¥,=0.1 for member strength
and V,= 0.8 for earthquake load'®.

Assume that C,r= 1.3, using stochastic limit analysis'” ', the first nine
most likely failure modes are obtained and defined as Mode 1 ~ 9 in
sequence according to their reliability indices by first order reliability
method'? (FORM), as shown in Fig. 2.

Obviously, each of these failure modes has different significance to
structural design.

1). Mode 1: Mode 1 is the strict entire beam-hinging mode, in which
plastic hinges develop in all the beam edges and the column bases of the
ground floor. This mode is the preferable failure mode due to its large
capability to absorb earthquake energy before collapse. One basic concept
of probabilistic design it to assure this mode form more likely than other
modes, thus the occurrence probability of this mode should be higher than
those of other failure modes.

2). Mode 2, 5 and 7: These modes are similar to mode 1. Even though
some hinges occurred in the top edges of columns of top floor and they are
considered less desirable, basically the yielding of the beams, except for
some in the top story, is prior to the yielding of columns, so these modes are
named nearly beam-hinging failure mode.

3). Mode 3 and 6: The hinges developed in the columns of the middle
stories. Since some hinges develop in the columns of middle stories, they
do not belong to the beam-hinging pattern, but are still categorized within
the entire collapse pattern.

4). Mode 4, 8 and 9: The hinges develop at all the top edges and bases of
columns in one or several continuous stories, and the structure collapses as
story mechanism.

Among all the 4 types of failure modes presented above, mode 1 is
undoubtedly the preferred mode, and generally other modes are considered
as undesirable modes. In practical seismic design, however, it is difficult to
ensure the structure collapse according to the entire beam-hinging pattern,
so the criterion generally becomes to avoid story mechanisms, and therefore
the failure modes of No. 2 and No. 3 types are allowable, even though they

are not the preferred pattern.
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Fig. 3. Story Collapse Types
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Fig. 4. 7-story-2-bay Frame for Example
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Fig. 6. P~C,; Curves for Upper Collapse Modes

Therefore, the failure modes can be defined generally in three types:

(1). Preferable mode, i.e., the strictly entire beam-hinging pattern, mode
1in Fig. 2;

(2). Allowable modes, including the nearly entire beam-hinging pattern
and entire collapse pattern, mode 2, 3, 5, 6, and 7 in Fig. 2;

(3). Unallowable modes, i.e., the story mechanism, mode 4, 8, 9 in Fig. 2.

In order to avoid story mechanisms probabilistically, it is necessary to

investigate the probabilities and occurrence orders of story mechanisms.

4. PROBABILISTIC INVESTIGATION ON STORY COLLAPSE
MODES

4.1 Classification of Story Mechanisms

When the investigation is focused on story mechanisms, the number of
failure modes will be greatly reduced. However, there are still generally
2"-1 story mechanisms for an n-story structure, including the entire
beam-hinging mode. It is obviously still troublesome to investigate all these
failure modes. In order to reduce the number of failure modes that should
be exhibited in structural design or analysis, the occurrence orders of these
modes are investigated here. In this paper the story failure modes are
classified into three patterns: upper collapse pattern, middle collapse pattern
and lower collapse pattern, as shown in Fig. 3. Upper collapse pattern is
characterized by the continuous collapsed stories from the top story; lower
collapse pattern is characterized by the continuous collapse of stories from
the first story; middle collapse pattern is with collapse of stories in the
middle structure, and the stories at the top and bottom remain unbroken.

Since the degree of prevalence of failure modes combined with any of the
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Fig. 5. Upper Collapse Modes for 7-story-2-bay Frame

collapse types mentioned above are obviously less than that of each single
type, the combination of the three collapse types are not considered in the
investigation. Then, there are n(n+1)/2 story mechanisms for an n-story
structure need to be investigated. The performance functions of all the
modes belonging to the same type can be unified by one formula. Taking a
2-bay-7-story frame structure shown in Fig. 4 as example, the failure

probabilities of these types are computed and analyzed.

4.2 Determination of Load Level

As mentioned above, the entire beam-hinging mode is the preferable
failure pattern of frame structure, and its failure probability can be
computed by FORM. This failure probability or the corresponding
reliability index reflects the safety of structure if the entire beam-hinging
pattern is the most likely failure mode. To ensure meaningful comparison of
the failure probabilities of story mechanisms, it is required that all the frame
structures are designed under the same reliability level. Under this
assumption, according to a designed reliability index of the preferable entire
beam-hinging failure pattern, 41 mean values of the earthquake load can be
computed out by changing the COF from 1.0 to 5.0 by step of 0.1, and the
loads are then applied to compute the failure probability of each story
mechanism. It has been indicated that the load level is proportional to the
COF™. In this study, the earthquake loads, which lead to an invariable
reliability index of entire beam-hinging failure pattern 8= 2.0 in whole the

COF region, are used in the analysis.

4.3 Investigation on Upper Story Mechanisms

For a 7-story structure, 6 upper collapse modes are likely to develop.
Figure 5 shows the distributions of plastic hinges in the upper collapse
modes. Using FORM, the computed P~C,,curves are shown in Fig. 6. From
the numerical results one can see that for upper collapse type with the
increase of the number of collapsed stories, the failure probability becomes
larger.

According to the collapse form showed in Fig. 3(a), the corresponding
performance function can be established based on the principle of virtual
work as:

m n-1 m
GX)=23M,,; +2 Y EM,,,-j

i=1 J=n-nc+li=1

3

2 m-1 n
+EMcsl+ EMCI_ E(j"’nc—”)hpj

=1 =1 J=n-nc+1
where M,,; is the plastic moment strength of top beams; M,; is the plastic

moment strength of beams below top floor; M., is the plastic moment

strength of exterior columns, M,; is the plastic moment strength of interior
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columns. P, is the load acting on the jth story of the structure. n and m are
the number of stories and spans, respectively. & is story height, and 7, is the

number of collapsed stories.
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Fig. 7. Middle and Lower Collapse Modes for 7-story-2-bay Frame
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The second moment reliability index of upper collapse type can be given

by (see Appendix 1),

2m(2n. =1+ Copdpy, — pph > j(j+n.—n)

Jj=n-nc+1

n
Vauph | 3G +n.-n)’
J=n-ngc+1

)

Bsm-uv =

In order to investigate the monotony of the second moment reliability

index, rewrite Eq. (4) as:

Bors-u = A7i(n0) + By Fa(n) —Vldfs(nf) ®)
2

where 4 and B are two positive polynomials independent of n.:

2 C,r—1
_ mpy(Cor —1) B 4my, ©)
v’l.uph Vz,uph
and,
L 20-1
[ =1 3G+ ne=m’] (72)
J=n-ng+1
n?
frln)=— e (7.b)
E.jb(j*'nc_n)h
J=n-nc+1

£, /> and f; are three new functions of n.. Once the monotony of fi, /> and
f; to n. is known, the monotony of Bg.c will also be known. It has been
demonstrated that £; and £ decrease and f; increases with the increase of n.
(Appendix 2), so one can know that s decreases monotonically with the
increase of n.. It means that for an n-story frame structure the upper
collapse mode with n-1 collapsed stories, has the minimum reliability index,

i.e., it is the most likely one within all the upper collapse modes.

4.4 Investigation on Middle Story Mechanisms
Middle story mechanism develops if the plastic hinges form in the middle
stories while the stories at top and bottom of structure remain intact, as

shown in Fig. 3(b). The corresponding performance function can be given
by:

ne=lm 4 2m=2 ne n-np
G(X)=2 E EMbij + Mcxl + EMCI— Ejhpjwrb - EncthHlb (3)
J=li=1 I=1 I=1 Jj=1 J=nc+l1

where 7, is the number of unbroken stories at bottom.

For the 7-story-2-span structure, the middle collapse modes are shown in
Figs. 7(a) and 7(b) for n. = 1 and n. = 2, respectively. The PrCy curves
computed by FORM are depicted in Fig. 8 (a) for n. = 1 and in Fig. 8 (b) for
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n.=2. For the lower collapse type of the 7-story structure, the 6 potential lower

From both Fig. 8 (a) and Fig. 8 (b), one can see that the larger the n,, the
smaller the P; ie., the failure probability of middle collapse mode
decreases with the shifting of the plastic hinges from lower stories to the
upper stories. When n, = 0, the middle collapse mode becomes lower
collapse mode. One can see from Figs. 8(a) & 8(b) that the failure
probability of lower collapse mode is always larger than that of middle
collapse mode with the same number of collapsed stories. For other cases of
n., the same tendency can also be found from the P~C, curves. Therefore,
the middle collapse modes are not the most likely failure mode.

In order to understand the relationship between the lower collapse types
and middle collapse types, consider the second moment reliability index of

the middle collapse type given by (Appendix 3):

ne n-np
dmpy(n. =1+ Co)—u hl > j(j+ny)+n. D(j+ny,)
f P
Jj=1 J=nc+1

®

Bsm-m =
5. 2. 2 "Rl 2
Vauph | D7+ mp)" +n" 3 (j+ny)
Jj=1 J=nc+l

In order to demonstrate the monotony of the second reliability index of

the middle collapse type with n,, the parameters excluding n, are all

assumed to be invariable. Rewrite Eq. (9) as:

Ampy, (n, =1+ Cor) = phC

Bsm-m = (10)
Vau,hyD
in which C and D are the function of », given by:
ne n-np
Cnp)= Y j(j+ny)+n. 2(j+ny) (11.a)
Jj=1 J=ne+l
ne a2, y » n-np ) )
D(ny)y= Y j°(j+ny) +n= 3 (j+ny) (11.b)
J=1 J=nc+l

It is known that both C(n;) and D(n) decrease with the increase of n,
(Appendix 4), and consequently the second moment reliability index of the
middle collapse type increases with the increase of the number of unbroken
stories at bottom.

4.5 Investigation on Lower Story Mechanisms

As described above, the lower collapse type can be considered as a

special case of middle collapse modes when n, = 0, and the performance

function can be obtained by assuming #, in Eq. (8) is 0 as:

ne=lm 4 2m=-2 ne n
GX)=2 3 IMy;+ IMeg+ IMy- 3 jhP;— InhP;  (12)
j=1i=1 I=1 =1 j=1 Je=nc+l

The parameters are the same as in the upper collapse type.

collapse modes are shown in Fig. 7(c). The computed P~C,, curves are
compared in Fig. 8(c), from which it can be found that each mode has a
special COF region where the failure probability of this mode is relatively
the greatest. That is to say, every lower collapse mode has the likelihood to
form first at a specific COF level. The variation of COF has a great
influence on the occurrence order of lower collapse modes. It can be
observed from Fig. 8(c) that the increase of COF causes relatively high
possibility of the developing of plastic hinges in more stories, namely the
structure designed with high COF tends to collapse in a pattern close to the
entire beam-hinging mode for the great weak-beam-strong-column effect.
This result agrees with that obtained in the research by Ogawa”.

To get an overall understanding on the most likely story mechanisms, it
is necessary to have a comparison between the upper collapse pattern and
lower collapse pattern even though it is difficult to give a clear
demonstration on their relationships. From Fig. 6 and Fig. 8(c) one can see
that the maximum probabilities of all the upper collapse modes ranges
about from 0.015 to 0.02, and compared with the probabilities of all the
lower collapse modes it is relatively large for high-level column
over-designed fames but small for low-level column over-designed frames.
Because both the upper collapse mode and the lower collapse modes are
likely to be the dominant story failure mode, it is suggested to take into
account all the lower collapse modes and the upper collapse mode with

most failure stories together when assessing structural reliability.

4.6 Investigation on Frames with Non-uniformly Distributed Strengths

The analysis presented above is concerned about frames with uniformly
distributed strengths over their height, in which the column strengths in
each floor are identical and the COF values in each beam-column node are
the same. To understand whether the frames with non-uniformly distributed
strengths obey the rules obtained from frame with uniform strengths, it is
required to conduct a numerical investigation on the story mechanisms of
the frame with ununiformly distributed strength.

Generally, the columns in lower stories of frame structures are designed
stronger than those in upper stories because they carry relatively larger load,
and that means the larger COF values in the beam-column nodes of lower
stories. Taking the 2-span-7-story frame shown in Fig. 3 as example and
assuming that 1.1 times of the exterior column strength of top floor are

designed for exterior columns in 4~6 floor, and 1.2 times for the exterior
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columns in 1~3 floor, and the other parameters are the same as used in the
previous analysis, the P~C,, curves can be obtained as shown in Fig. 9,
where the COF value is that of beam-column node in top story, the
minimum one of all the COF values of frame. From Fig. 9 basically the
same results as obtained in the analysis of the frame with uniform
distributed strengths can be observed. Even though it is difficult to draw a
definite conclusion theoretically from the reliability indices, the results of
this example indicate that the rules of story mechanisms of frame with
uniform strengths are generally applicable for those of the frame with

slightly non-uniformly distributed strengths.

5. CONCLUSIONS

The preferable and undesirable failure modes for aseismic design of
frame structures are analyzed, and the failure probabilities of the story
mechanisms of frame structures are investigated probabilistically through
both numerical and theoretical analysis. It was found that:

(1) Regardless of the COF, for the upper story mechanisms the larger the
number of the collapse stories, the higher the occurrence probability;

(2) For the middle story mechanisms with an identical number of
collapse stories, the plastic hinges are more likely to develop in lower
stories of structure;

(3) For the story mechanisms with the same number of failure stories, the
probability of the lower collapse mode is always higher than that of
the middle collapse mode if all the beam-column nodes are designed
with the same COF;

(4) The probabilistic orders of lower story mechanisms are affected
notably by the COF values of frames. For low-level column
over-designed frames, the plastic hinges tend to develop in less
stories; for high-level column over-designed frames, the plastic
hinges tend to develop in more stories.

Based on these results, for a specific n-story frame structure considered

in design, the most likely story mechanisms can be identified as the n-1

lower story mechanisms and the upper story mechanism with »-1 failure
stories.

It should be noted that the investigation was conducted under some
restrictive assumptions described in the paper. Some other factors that are
not considered in this study, such as second-order effects and axial
deformation, type of ground motion and dynamic response, distribution
type of random variables, definition of the beam-hinging pattern, and
correlation among member strengths, may be important, and further

researches involving these factors are needed.
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APPENDIX 1: The Reliability Index of Upper Collapse Type
In order to investigate the monotony of occurrence probability of the

upper collapse type, rewrite the performance function as:

G(X):xm—xp (13)
where,
m n-1 m 2 m-1
Xy =23 My +2 % IMy+ SMog+ IMy  (14.2)
i=1 J=n—nc+li=1 =1 1=1
n
Xp= X(j+n.-mhpP (14.b)

J=n-nc+1
It is assumed that the structure was designed with one COF in all the

column-beam nodes, and the mean values and coefficients of variation of
random variables are defined as:
Moni = Mp>  Mpij = 2,
Pest = Coplty, tey =2C o1y, My = ju, (15)
Vi =Vij =Va =Vea =V1, V=V, (16)



Then the mean value and standard variation of x,, and x, are given as

following:
By, =2m2n. =1+ C,p ), (17.a)
Hyp =tiph  T(j+n.-n) (17.b)
J=n-ng+1
Oy = Vl,ubJ2[(2m ~DC,2 +8m(n, -1+ z] (17.¢)

n
Oy =Vzuph1‘ S +nc-n) (17.d)
J=n-n¢+1

The mean value and standard variation of performance function G are thus:

n
UG =2m(2n =1+ Cop)py —pph  2(j+n.-n) (18.2)

J=n-nc+1

0g* = 2V12ub2[(2m ~DCof? +8min, - 1)+ 2]

22,2 w2 2 (18.6)
V) u,"ht 3G+ ne—n)”
J=n-ng+1
Meanwhile since ¥,’<<V>’, 05 can be approximately given as:
n
0G =0, =Vapphl S +n.-n)?? (19)
J=n-nc+1

Then the approximate expression of the second reliability index is obtained

as Eq. (4).

APPENDIX 2: The Monotony of f;, f; and f; to n,
Among the three functions in Eq. (7), fi obviously decreases
monotonically with the increase of n.. f; can be expanded as:
30n

fa= < 20)
: 1+ n)=1+5n+n_+5nn, +10n%n,.-n.2~5nn.7 + nL,3)

Then to differentiate £, it is obtained as:

df, -30(1-5n% +10n%n,2 = 10nn,2 + 3n,%)

dn, - A+ n ) (-1+5n%+ n.+5nn,+10n°n, - n 2 —Snnc2 + nc3)2

@n

Since total story number n = 2, one can easily understand that:

1-5n +10n°n.% 10002 +3n,* = 5020, 2 (n-1) - n]+3n,2 +1>0 (22)
. Therefore f,'(n.) < 0, and it means f; decreases monotonically with the
increase of n,.
Similarly expanding f; as:
Sn.(1+n)1-n,+ 3n)?

6(~1+5n%+n_+5nn, +10n%n, - n > --Snnc2 +nc3)

f=

(23)

then differentiate f; as:
g _
dnc
+2nc(45n -39n

[(llnn +n.% =10nn,)+10n%n 2(3n ~2n,)?

2n 2 +13nn.> —n )+ 340t + 23n%n 2 —34’}"3 +5n.%)
+2(15n% +12nn,2 ~14n%n - 4n )+ (11n* =4n +3n .2 ~6n+2n,-1))]
H-1+n.+5n%+ Snn, +10n%n, - n 2 -5mn.2+n2>)?

(24)
In Eq. (24), all the items in the square bracket are arranged for the easy

understanding that the polynomials in parentheses each is larger than zero,
and thus it is known that £;'(n.) > 0. Namely £; increases monotonically with

Ne.

APPENDIX 3: The Second Moment Reliability Index of the Middle
Collapse Type

Similar to Appendix 1, rewrite the performance function Eq. (8) as Eq.

(13), but here:

ne=tm 2m-2
Xp=23 EMbu‘*‘ EMrsI"‘ 2 (25.a)
J=1i=1
Xp ‘21" jenp t 2” hP jnp (25.b)
J=nc+l

According to Eqgs. (15) and (16), the mean value and standard variation of

X» and x, are given by:

By, =4mpy(n. -1+ Cpp) (26.a)
n-np
—Mph[21(1+n;,)+n 20+ )l (26.b)
Jj=1 J=ne+l
Ty =Vittpy2min =1+ Cof? +@m=2C > (26.)

n-np
Oxp =Vattph JEJ Gemp)enl 3 (+n) (26.d)

Jj=1 J=nc+1
Then the mean value and standard variation of performance function G are

obtained as:

n-np

fG =4mp, (n, =1+ Cpp) - yph[}:](]+n,,)+nl. 2(/+nb)] (27.a)
J=ne+l
(TG =V y,,llm(nc—l)+(2m—1)(,of ]
L ne n-ny @7.b)
+V22yp2h‘[2j2(j+nb)z+nc2 S (+n)?)

Jj=1 Jj=nc+l
Since ¥,’<< V3%, Basarcan be approximately expressed by Eq. (9).

APPENDIX 4: The Monotony of C(n,) and D(n;) to n,
Obviously, C >0 and D> 0. If using C(n,+1) to subtract C(n,), then:
C(ny +1)=C(ny)

He n-np-1 n-np
=[S j(G+n,+)+n, 2(}+nb+l)] [21(1+n,,)+n E(/+n,,)] (28)
j=1 J=nc+l Jj=1 J=nc+l

=—%(nc—1+2n—2nb)<0
Here n. obeys that n. = 1. It is indicated from the obtained result that C(#n,)
has the monotony decreasing with n,. Similarly subtract D(n,) from D(ny+1),

it is found that:

n-np-1

D(ny +1)-D(ny) = [E/ (j+nb+1) -ﬁ-n2 Y (j+nb+1)J
Jj=1 J=ne+l
% 2, 2 2 b 2
12/ G+n) +nS 3 (j+np)] 29
j=1 J=nc+1

=—-16-[3nc3—1+6ncn,,(1+nb)+4n62(1+2n,,)—2n,,]<0
Then one can easily understand that D(n,) also decreases monotonically

Wlth Rp.
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