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Introduction

The evaluation of system reliability for structures has been an
active area of research for over three decades. According to the
logical relationship of the failure modes of structures, structural
systems can be divided into three types: series systems, parallel
systems, and hybrid structural systems. Of interest here is the
reliability assessment of series systems, which is encountered
most frequently in practical design and analysis.

The failure probability of a series structural system theoreti-
cally involves multidimensional integration, which is usually dif-
ficult to evaluate, especially for structures of practical signifi-
cance. The search for efficient computational procedures for
estimating system reliability has resulted in several approaches,
including bounding techniques and efficient Monte Carlo simula-
tions �MCS�.

The bounding methods include the wide bound estimation
method and the narrow bound estimation method. For the narrow
bound method, the joint failure probability of every pair of failure
modes needs to be calculated. In this study, in order to improve
the accuracy of the narrow bound estimation method, a point
estimation of the joint failure probability of series structural sys-
tems is proposed and examined.
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Consider a series structural system with k possible failure modes,
and let the performance function for failure mode i be given by

gi�X� = gi�x1,x2, ¯ ,xn�; i = 1,2, ¯ ,k �1�

where x1 ,x2 , . . . ,xn are the basic random variables and gi�·� is the
performance function.

Define the failure event for failure mode i as

Ei = �gi�X� � 0� �2�

Since the occurrence of any failure event Ei will cause the
failure of the structure, the failure event E of the structure is the
union of all the possible failure modes, which can be expressed as

E = E1 � E2 � ¯ � Ek �3�

In structural reliability theory, the failure probability Pf of a
series structural system corresponding to the occurrence of the
event E of Eq. �3� theoretically involves the following integration:

Pf = � ¯�
�E1�E2�¯�Ek�

fx1,x2,¯,xn
�x1,x2, ¯ ,xn�dx1dx2 ¯ dxn �4�

where f�·� is the pertinent joint probability density function.
The evaluation of the above multidimensional integration is

often difficult, especially for structures of practical dimensions.
For this reason, approximate methods have been proposed and
developed. These include the following “wide” bound technique
for the failure probability of series structural systems �e.g., Cor-
nell �1967��:

max
1�i�k

�Pfi� � Pf � 1 − �
i=1

k

�1 − Pfi� �5�

where Pfi is the failure probability of the ith failure mode.
Since only the failure probability of a single failure mode is
considered and the correlation of the failure modes is neglected,



the above wide bound estimation method is simple to evaluate;
however, the bounds can be very wide, especially for a complex
system.

A “narrow” bound estimation method for the failure probabil-
ity of series systems is also available �Ditlevsen 1979�

Pf1 + �
i=2

k

max�Pfi − �
j=1

i−1

Pfij,0	 � Pf � �
i=1

k

Pfi − �
i=2

k

max
j�i

�Pfij�

�6�

where Pfij is the joint probability of the simultaneous occurrences
of the ith and jth failure modes. The left- and right-hand sides of
Eq. �6� are, respectively, the lower bound and upper bound of the
failure probability of a series structural system with k potential
failure modes. Observe that because the joint probability of si-
multaneous failures of every pair of failure modes must be evalu-
ated, the resulting bounds of Eq. �6� are narrower than those of
Eq. �5�.

As is well known, Pfij can be expressed by �Ang and Tang
1984�

Pfij = �2�− �i,− � j,�ij� =�
−�

−�i �
−�

−�j

�2�xi,xj,�ij�dxidxj �7�

where

�2�xi,xj,�ij� =
1

2�
1 − �ij
2

exp�−
1

2
·

xi
2 + xj

2 − 2�ijxixj

1 − �ij
2 	 �8�

The reliability indices �i and � j correspond to the ith and jth
failure modes, respectively; �ij is the correlation coefficient be-
tween the ith and jth failure modes; and �2�·� and �2�·� are the
probability density function and cumulative distribution function,
respectively, of 2D standard normal distribution.

Fig. 1. Probability calculatio
JO
Eq. �7� is an accurate expression for Pfij. To obtain the results,
however, numerical integrations would be needed. To avoid such
numerical integrations, further approximations are often adopted
�involving further bounds for Pfij�. Specific formulas for evaluat-
ing the lower and upper bounds of the joint failure probability Pfij

were proposed by Ditlevsen �1979� as follows:

�max�P�A�,P�B�� � Pfij � P�A� + P�B� �ij 	 0

0 � Pfij � min�P�A�,P�B�� �ij � 0
� �9�

where

P�A� = ��− �i���−
� j − �ij�i


1 − �ij
2 	

�10�

P�B� = ��− � j���−
�i − �ij� j


1 − �ij
2 	

Since Eq. �9� is a bound rather than a specific value, it is not
convenient to use in Eq. �6�. Feng �1989� gave a point estimate
for the joint failure probability Pfij as

Pfij = �P�A� + P�B���1 − arccos��ij�/�� �11�

where the definitions of P�A� and P�B� are the same as those in
Eq. �9� and can also be calculated by Eq. �10�. Since Eq. �11� is a
specific value rather than a bound, it is convenient and considered
to have high accuracy to be used in Eq. �6� for obtaining the
narrow bounds of the system reliability �Wu and Burnside 1990;
Song 1992; Penmesta and Grandhi 2002; Adduri et al. 2004�. As
described by Feng �1989�, when the correlation coefficient �ij

=0 or 1, Eq. �11� gives accurate solutions, whereas when 0��ij

�1, the calculational accuracy is reasonably high, especially
when �ij�0.6. However, as will be shown later, the lower bound

f12 in standard normal space
n of P
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obtained with Eq. �11� can sometimes be lower than the lower
bound given by Eq. �9�.

The present paper proposes an alternate method for estimating
the joint failure probability, Pfij.

Proposed Point Estimate of Joint Failure Probability

To express the formulas more conveniently, �1 and �2 are used to
represent �i and � j, respectively, and � is used to represent �ij.
Without loss of generality, assume 0��1��2.

Let Z1 and Z2 be the limit state functions in standard normal
space corresponding to �1 and �2; then, the geometrical relation-
ship between Z1=0 and Z2=0 can be depicted in Fig. 1�a� when
�1 /�2	� and in Fig. 1�b� when �1 /�2��.

Let the angle between OB ��1� and OC ��2� be v; then


 = arccos��� �12�

In Fig. 1, the crossing point of Z1=0 and Z2=0 is point A. Define
the length of the line segment OA as crossing index �0, and
denote the angle between OA and OB as v1 and the angle between
OA and OC as v2; then v1 and v2 can be expressed as


1 = arccos��1/�0� �13a�


2 = arccos��2/�0� �13b�

With the aid of the geometrical relationships of �0, �1, and �2,
�0 can be given as �see Appendix I�

�0 =
�1
2 − 2��1�2 + �2

2

1 − �2 �14�

Let V1 denote the area of the failure zone between ray OA and
Z1=0, and V2 denote the area of the failure zone between OA and
Z2=0, shown as the respective shaded zones in Fig. 1. The angle
�OAB is equal to � /2−v1 and the angle �OAC is equal to
� /2−v2. Since the joint failure probability Pf12 is the area of the
failure zone between Z1=0 and Z2=0, Pf12 can be given as the
following equation according to the geometrical relations in
Fig. 1:

Pf12 = � V1 + V2 �1/�2 	 �

Pf2 + V1 − V2 �1/�2 � �
� �15�

In particular, when �1 /�2=�, �0=�2. Then one can see that
V2= Pf2 /2 from both Fig. 1�a� and Fig. 1�b�, which means that
both the formulas in Eq. �15� give the same results for
�1 /�2=�.

When vm	� /4 �where m=1,2�, Vm of Eq. �15� can be ob-
tained by constructing two perpendicular lines, DD� and EE�,
through point A; the crossing point of Z1=0 and Z2=0. Let the
angle �DAO= �EAO=� /4, as shown in Fig. 2.

Obviously, if EE� and DD� are considered to be limit state
lines, both of their corresponding reliability indices would be
�0 /
2. Since EE� and DD� are perpendicular, the probability as-
sociated with the area enclosed by �E�AD� �gray area in Fig. 2�
can be obtained as �2�−�0 /
2�. Since the angle between OA and
Zm=0 �the shaded zone in Fig. 2� that corresponds to Vm is
� /2-vm, we have

�/2

�2�− �0/
2�


�/2 − 
m

Vm
�16�
Hence Vm can be given as
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Vm  �2�− �0/
2��1 −
2
m

�
	 ; 
m 	 �/4 where m = 1,2

�17�

When vm�� /4 �where m=1,2�, with the horizontal line FF�
through point A, the reliability index corresponding to limit state
line FF� is equal to 
�0

2−�m
2 and the probability corresponding to

the angle between Zm=0 and FF�, shown as the gray area in Fig.
3�a�, can be given as ��−�m���−
�0

2−�m
2 �, because the lines

Zm=0 and FF� are perpendicular. Denote the probability corre-
sponding to the angle OA and FF� as V� �the shaded zone in Fig.
3�a��, then Vm can be given by the following equation according
to the geometrical relations in Fig. 3�a�

Vm  ��− �m���− 
�0
2 − �m

2 � − V�

In order to obtain V�, draw two perpendicular lines DD� and
EE� through point A. Let the angle �DAO= �EAO=� /4, as
shown in Fig. 3�b�. Obviously, both of the reliability indices cor-
responding to the limit state lines EE� and DD� would be �0 /
2,
and the probability corresponding to the area defined by the angle
�E�AD� �gray area in Fig. 3�b�� can be obtained as
�2�−�0 /
2� because EE� and DD� are perpendicular.

Since the angle between OA and FF� �the shaded zone in Fig.
3�b�� that corresponds to V� is equal to vm, one obtains

�/2

�2�− �0/
2�



m

V�

and then

V�  �2�− �0/
2�
2
m

�

Fig. 2. Geometrical relations for vm	� /4
Therefore



Vm  ��− �m���− 
�0
2 − �m

2 � − �2�− �0/
2�
2
m

�
;


m � �/4, where m = 1,2 �18�

Write

Pm = ��− �m���− 
�0
2 − �m

2 �
�19�

P0 = �2�− �0/
2�

Then Eqs. ��17� and �18�� can be written as

Vm = �P0�1 −
2
m

�
	 
m 	

�

4

Pm − P0

2
m

�

m �

�

4
� where m = 1,2 �20�

Eqs. �15� and �20� are the proposed formulas for estimating the
joint failure probability Pf12.

When vm=� /4, according to Eq. �13�, �0=
2�m, then Pm

= P0=�2�−�m�. In this case, the two formulas in Eq. �20� give the
same results.

The formulas also can be written as follows: For �1 /�2	�

Pf12 = �P2 + P0�1 −
2


�
	 
1 	

�

4

P1 + P2 − P0

2


�

1 �

�

4
� �21�

And for �1 /�2��

Pf12 =�
Pf2 − P0

2


�

1 	

�

4
, 
2 	

�

4

Pf2 − P2 + P0�1 −
2


�
	 
1 	

�

4
, 
2 �

�

4

Pf2 + P1 − P2 − P0

2


�

1 �

�

4

� �22�

Fig. 3. Geometrica
where

JO
P1 = ��− �1���− 
�0
2 − �1

2� �23a�

P2 = ��− �2���− 
�0
2 − �2

2� �23b�

in which P1 and P2 can also be expressed as follows �see Appen-
dix II�:

P1 = ��− �1���−
�2 − ��1


1 − �2 	 �24a�

P2 = ��− �2���−
��1 − ��2�

1 − �2 	 �24b�

Eqs. �24� are almost the same as P�A� and P�B� in Eq. �10� if
one uses �1, �2, and � to represent �i, � j, and �ij, respectively, in
Ditlevsen’s formula.

In particular, when �=0, it can be seen that v=arccos�0�
=� /2 and �0=
�1

2+�2
2; then

P1 = P2 = ��− �1���− �2�

Since v1+v2=v=� /2, and v1	v2, one can see that v1	� /4.
Then Pf12 is given by

Pf12 = ��− �1���− �2�; � = 0 �25�

Another special case is when �=1. Obviously, Pf12 cannot be
directly given by the equations given above since �0 is not de-
fined when �=1. In this case, when �→1, we have �see Appendix
III�

lim
�→1

Pf12 = Pf2 �26�

Examination through Specific Examples

In order to evaluate the advantage or superiority of the proposed

ions for vm�� /4
l relat
method, a number of series structural systems are examined.
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Example 1

Consider first a series structural system with only two failure
modes. Several cases are examined to compare the results by
different methods as follows.

When the reliability indices of the two failure modes are the
same, the results for Pf12 are presented in Figs. 4�a–c� with �1

=�2=2; �1=�2=3; and �1=�2=4, respectively, and for various
correlation coefficient �. Figs. 4�a–c� show the solutions obtained
by integration, the Ditlevsen’s bounds, Feng’s point estimation,
and the point estimation proposed here. From the figures, it can be
seen that �1� Ditlevsen’s bounds correctly bound the integration
results; �2� the results by Feng’s method are quite close to the
integration results; and �3� the results given by the present method
have a better agreement with the integration method than those by
Feng’s method.

When the reliability indices for the two failure modes are dif-
ferent, the variations of the joint failure probability Pf12 with
respect to the correlation coefficient � are depicted in Figs. 4�d–f�,
respectively, for �1=2.5, �2=3.5; �1=2, �2=4; and �1=1, �2

=5. From these figures, it can be seen that the integration results
are always located between the narrow bound solutions.

Both the results by Feng’s method and the present method
have good agreement with the integration method when �=0 and
�=1. However, whereas the results by the present method have a
good agreement with those by integration for all three cases, the
results given by Feng’s method tend to be lower than the lower
bound solution, especially for large �, and this discrepancy be-
comes very large for significant differences in the two reliability
indices �Fig. 4�f��.

The variations of the joint failure probability Pf12 with respect
to the difference between the reliability indices for two failure
modes are depicted in Figs. 5�a and b�, respectively, for �1=2,
�=0.5, and for �1=2, �=0.8. From these figures, it can be seen
that the larger the difference between the two reliability indices,
the narrower the reliability bound width. Feng’s method gives
good results for the small difference between the two reliability
indices, and the present method gives good approximation of the
integration results for the whole investigation range.

Example 2

Consider next a series structural system with four failure modes,
in which the first-order reliability indices for the four individual
failure modes have been obtained as �1=2.5, �2=2.5, �3=3.0,
�4=3.5, and the correlation coefficient between every pair of fail-
ure modes is assumed to be �=0.86. The joint failure probability
results, Pfij, calculated by different methods are listed in Table 1,
and the corresponding results for the system failure probability,
Pf, are listed in Table 2. From Tables 1 and 2, it can be seen that
the results by the present method are between the lower and upper
bounds and are in good agreement with those obtained by numeri-
cal integration. Also, the bounds obtained with the present method
are the narrowest among all the methods.

Example 3

Consider a one-story one-bay elastoplastic frame shown in Fig. 6
�after Ono et al. �1990��. The loads Mi and member strengths
Si are independent log-normal random variables with mean
values of �M1=�M2=500 ft kip, �M3=667 ft kip, �S1=50 kip,
�S2=100 kip and standard deviations of �M1=�M2=75 ft kip,

�M3=100 ft kip, �S1=15 kip, �S2=10 kip. The performance func-

592 / JOURNAL OF ENGINEERING MECHANICS © ASCE / MAY 2007
tions that correspond to the six most likely failure modes obtained
from stochastic limit analysis are listed below, with the FORM
reliability index for each mode given in parentheses to show the
relative dominance of the different modes:

g1 = 2M1 + 2M2 − 15S1 ��F = 3.247� �27a�

g2 = M1 + 3M2 + 2M3 − 15S1 − 10S2 ��F = 3.551� �27b�

g3 = 2M1 + M2 + M3 − 15S1 ��F = 3.562� �27c�

g4 = M1 + 2M2 + M3 − 15S1 ��F = 3.562� �27d�

g5 = M1 + M2 + 2M3 − 15S1 ��F = 3.784� �27e�

g6 = M1 + M2 + 4M3 − 15S1 − 10S2 ��F = 3.848� �27f�

Using the performance functions listed in Eq. �27�, the corre-
lation matrix is as follows:

�C� = � 1 0.810 0.942 0.875 0.753 0.499

0.810 1 0.932 0.837 0.895 0.855

0.942 0.932 1 0.937 0.920 0.749

0.875 0.837 0.937 1 0.920 0.749

0.753 0.895 0.920 0.920 1 0.923

0.499 0.855 0.749 0.749 0.923 1

�
and the joint failure probability for each pair of failure modes are
given in the following matrix:

�Pfij� = 10−6 �582.8 72.81 147.1 101.4 28.14 4.778

72.81 191.8 88.45 47.40 40.39 26.43

147.1 88.45 183.9 89.31 46.88 13.27

101.4 47.40 89.31 183.9 46.88 13.27

28.14 40.39 46.88 46.88 77.14 27.83

4.778 26.43 13.27 13.27 27.83 59.50

�
from which the lower and upper bounds of the system failure
probability are obtained, respectively, as 7.017·10−4 and
9.331·10−4. The corresponding MCS solution using a 10-million
sample size is 6.147·10−4 with a COV of 1.275%. One can see
that the MCS result is outside the indicated bounds. This is be-
cause the FORM reliability indices used in calculating the above
bounds are not accurate for each performance function. Using the
4M approach �Zhao and Ang 2003�, the reliability indices are
more accurately obtained as 3.293, 3.623, 3.629, 3.629, 3.871,
3.957, corresponding to the six respective performance functions
of Eq. �27�. With these latter reliability indices, the joint failure
probability for each pair of failure modes is then obtained as
follows:

�Pfij� = 10−6 �495.1 56.0 115.4 79.51 20.28 3.080

56.0 145.2 66.66 35.14 28.49 17.28

115.4 66.66 142.3 68.13 33.46 8.628

79.51 35.15 68.13 142.3 33.46 8.628

20.28 28.49 33.46 33.46 54.23 18.06

3.080 17.28 8.628 8.628 18.06 37.86

�
from which the bounds of the system failure probability become
5.844·10−4 and 7.147·10−4. Then we can observe that the MCS
solution for the system failure probability of 6.147·10−4 is clearly

bounded by the narrow bounds.



Fig. 4. Variations of joint failure probability Pf12 with respect to correlation coefficient
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Example 4

Finally, consider the simple elastoplastic beam-cable system
shown in Fig. 7 �after Ang and Tang 1984�. The performance
functions of the potential failure modes are listed below with the
respective FORM reliability indices indicated in parentheses

g1 = 6M − L2/2 ��F = 3.322� �28a�

g2 = F1L + 2F2L − 2wL2 ��F = 3.647� �28b�

g3 = M + F2L − wL2/2 ��F = 4.515� �28c�

g4 = 2M + F1L − wL2 ��F = 4.515� �28d�

where M, F1, F2, and w are normally distributed with mean val-
ues of �w=2 kip/ ft, �F1=60 kip, �F2=30 kip, and �M

=100 ft kip and COVs of Vw=0.2 and VF=VM =0.1.
Using the performance functions listed in Eq. �28�, the corre-

lation matrix is obtained as

�C� = � 1 0.412 0.534 0.534

0.412 1 0.856 0.856

0.534 0.856 1 0.553

0.534 0.856 0.553 1
�

and the joint failure probability of each pair of failure modes are
given in the following matrix

Table 1. Calculation of Joint Failure Probability Pfij�10−4�

Method
Present
method

Feng’s
method

Pf21 25.961 25.385

Pf31, Pf32 9.5369 8.7634

Pf41, Pf42 2.1401 1.8334

Pf43 1.5130 1.3802

Fig. 5. Variations of joint failure probability
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�Pfij� = 10−6 �446.6 3.853 0.542 0.542

3.853 132.6 1.324 1.324

0.542 1.324 3.163 0.035

0.542 1.324 0.035 3.163
�

from which the bounds of the system failure probability are
5.779·10−4 and 5.790·10−4. The result obtained by numerical in-
tegration is 5.780·10−4. One can see that the bound width is quite
narrow, and both the lower and upper bounds are close to the
solution obtained through numerical integration.

Conclusion

In order to improve the narrow bounds of the failure probability
of a series structural system, a point estimation method is pro-
posed for calculating the joint probability of every pair of failure
modes of the system. Based on the computational results of the
illustrative examples, the following conclusions can be observed:
1. With the proposed point estimation of the failure probability

for each pair of failure modes in a series structural system,
the results of the narrow bound method can be improved.

2. When the correlation coefficient, �=0, or �=1, the proposed
method gives accurate solutions, whereas when 0���1, the
present method yields results that are quite close to those
obtained by numerical integration and are consistently lo-
cated between the lower and upper bound solutions.

3. Sometimes accurate estimates of the reliability indices of the

Ditlevsen’s method Numerical
integrationower bound Upper bound

15.301 30.601 27.340

7.5905 10.5640 9.6690

1.9596 2.2101 2.1150

1.1813 1.6638 1.5270

ith difference between two reliability indices
L

Pf12 w



individual failure modes is necessary for determining the
correct narrow bounds of the system failure probability. This
is illustrated in Example 3.

4. The method of Feng�1989� gives good results when the reli-
ability indices for the pair of failure modes are the same;
however, when the reliability indices of the two failure
modes are different, Feng’s method generally gives results
that are below the lower bound for a relatively large correla-
tion coefficient. Moreover, this error increases for a larger
difference in the two reliability indices.

Appendix I. Crossing Index �0

According to Fig. 1, �OA�=�0, �OB�=�1, �OC�=�2.
In the triangle OBC, according to the cosine law

�BC�2 = �OB�2 − 2�cos � BOC��OB��OC� + �OC�2

= �1
2 − 2 cos 
 · �1�2 + �2

2 = �1
2 − 2��1�2 + �2

2

� � OCA = � OBA = �/2

� Points O, A, B, C lie on the same circle with the center of the
circle being at the midpoint of line segment OA.
� In the same circle, �OAB= �OCB.

Table 2. Calculation Results of System Failure Probability Pf�10−3�

Method Present method
Feng’s
method

Ditlevsen’s
method

Numerical
integration

Lower bound 9.8234 9.8809 9.3593

Upper bound 10.2386 10.4040 11.5170 Pf =9.8912

Bound width 0.4152 0.5231 2.1577

Fig. 6. One-story, one-bay frame of Example 3

Fig. 7. Beam-cable system of Example 4
JO
In the triangle OAB, according to the sine law

�0

sin �/2
=

�1

sin � OAB

In the triangle OCB, according to the sine law

�1

sin � OCB
=

�BC�
sin 


� � OAB = � OCB

�
�0

sin �/2
=

�BC�
sin 


� �BC�2 = �0
2 sin2 
 = �0

2�1 − cos2 
� = �0
2�1 − �2�

��1
2 − 2��1�2 + �2

2 = �0
2�1 − �2�

��0 =
�1
2 − 2��1�2 + �2

2

1 − �2

Appendix II

In the present paper, according to Eq. �14�

�0
2 − �2

2 =
�1

2 − 2��1�2 + �2
2

1 − �2 − �2
2 =

1

1 − �2 ��1 − ��2�2

Then


�0
2 − �2

2 =
��1 − ��2�

1 − �2

Hence

P2 = ��− �2���−
��1 − ��2�

1 − �2 	

Similarly

P1 = ��− �1���−
�2 − ��1


1 − �2 	

Appendix III. Limit of Pf12 for �\1

When �=1, according to Eq. �12�, one has lim�→1v
=lim�→1arccos���=0
1. If �1 /�2=1, one can see that v1+v2=v=0, and �0=�1=�2,

then according to Eq. �19�, one has

P1 = ��− �1���0� =
1

2
��− �1�

P2 = ��− �2���0� =
1

2
��− �2� = P1

Therefore

Pf12 = P1 + P2 − P0 ·
2


= ��− �2� = Pf2

�
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2. If �1 /�2�1, according to Eq. �14�, one can see that when

�→1, �0→�, and hence 
�0
2−�1

2→�, 
�0
2−�2

2→�, and
�0 /
2→�.

According to Eq. �19�

lim�→1P1 = lim�→1��− �1���− 
�0
2 − �1

2� = 0;

lim�→1P2 = lim�→1��− �2���− 
�0
2 − �1

2� = 0; and

lim�→1P0 = lim�→1�2�− �0/
2� = 0.

Therefore, according to Eq. �22�, one obtains lim�→1Pf12

= Pf2.
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