SYSTEM RELIABILITY EVALUATION OF DUCTILE FRAME STRUCTURES

By Yan-Gang Zhao' and Tetsuro Ono’

ABSTRACT: The system reliability evaluation of ductile frame structures presents two difficulties. One is the
identification of significant failure modes; the other is the computation of overall failure probabilities contributed
from these significant modes. In this paper, a practical procedure is developed, in which a failure mode inde-
pendent performance function is defined using load factor obtained by limit analysis, and a response surface
approach is used to approximate the performance function. With the performance function of explicit second-
degree polynomial, the failure probability can be readily obtained using First and Second Order Reliability
Method (FORM/SORM). Several examples are investigated, and it is found that the obtained response surface
is a good approximation of the inner connotative surface of the limit state surfaces of the structural system. The
proposed procedure has good efficiency and enough accuracy for system reliability evaluation of ductile frame
structures. The difficulty in both failure mode identification and failure probability computation can be avoided

by using the proposed procedure.

INTRODUCTION

The evaluation of system reliability for ductile frame struc-
tures has been an active area of research for nearly 30 years.
During this period, efficient procedures have been developed
for reliability evaluation of individual limit state. The com-
putation of system reliability, which is affected by many in-
teracting limit states, still presents considerable difficulties and
expenses. The search for efficient computational procedures to
estimate system reliability has resulted in several approaches,
such as the failure modes approach and direct Monte Carlo
simulation. In this paper, a practical procedure is proposed, in
which a failure mode independent performance function is de-
fined and a response surface approach is used to approximate
the performance function. With the performance function of
explicit second-degree polynomial, the failure probability can
be readily obtained using First and Second Order Reliability
Method (FORM/SORM).

SYSTEM RELIABILITY OF DUCTILE FRAME
STRUCTURES

For ductile frame structures considered in this study, several
commonly used assumptions are applied.

1. Elasto-plastic frame structures are considered. The fail-
ure of a section means the imposition of a hinge and an
artificial moment at this section.

2. Structural uncertainties are represented by considering
only moment capacities as random variables,

3. Geometrical second-order and shear effects are ne-
glected. The effects of axial forces on the reduction of
moment capacities are also neglected.

Based on the upper-bound theorem of plasticity (Livesley
1976), failure of a ductile frame structure is defined as the
formation of a kinematically admissible mechanism due to the
formation of plastic hinges at a certain number of sections.

Since a structural system may fail in different modes, the
general definition of performance function for ductile frame
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structures is the minimum value of the performance functions
corresponding to all the potential failure modes as shown in

).
GM, P) = min[GM, P), G;(M, P), ..

where M = vector of moment capacities of the structures; and
P = load vector. G(M, P) is the performance function corre-
sponding to ith failure mode.

To obtain the performance function defined by (1), the po-
tential failure modes should be identified. However, there is
generally an astronomically large number of potential failure
paths in large-scale structures, and in most cases only a small
fraction of them contribute significantly to the overall failure
probability. These may be referred to as significant failure se-
quences, and the estimation of system failure probability based
on these sequences is expected to be close to the true answer.

Many types of systematic component failure generation pro-
cedures have been developed to identify this set of failure
paths with relatively higher failure probability, such as enu-
meration-type techniques (Thoft-Christensen and Murotsu
1986). Among the enumeration techniques, the truncated enu-
meration method (Melchers and Tang 1985; Nafday 1987;
Xiao and Mahadeven 1994) provided a systematic, rational
derivation and generalized earlier methods in this category
such as the branch and bound method (Murotsu et al. 1984)
and incremental load method (Moses 1982). However, these
methods result in a large number of failure paths and structural
reanalysis, which makes the computation very expensive even
for small-size structures. Other methods for identifying the sig-
nificant failure mode include the stable configuration approach
(Bennett and Ang 1987). Mathematical programming tech-
niques (Zimmerman et al. 1993; Ohi 1991) can give the likely
failure modes with less computation time, but the guarantee
against the losing of significant modes is found to be difficult.

The computation of failure probability is difficult even if
the potential failure modes have been known, because of the
large number of the failure modes, the difficulty in obtaining
the sensitivity of performance function in (1), and the corre-
lation among the failure modes. Many approximate methods
such as bounding techniques [e.g., Cornell (1966); Schueler
and Stix (1987)], probabilistic network evaluation technique
(PNET) (Ang and Ma 1981), high-order moment standardi-
zation technique (Ono et al. 1990), and the point estimation
method (Idota et al. 1991) have been developed. There is still
no method that satisfies both the requirements of efficiency
and accuracy up to now.

On the other hand, in order to avoid the identification of
failure mode and the computation of failure probability from
mode probability, the Monte Carlo simulation can be directly
used to deal with the calculation of system reliability (Grim-

S GMP)] (D



melt and Schueller 1982; Melchers 1994), but the computation
becomes too expensive to be applied to large structural sys-
tems or those with low failure probability. Furthermore, direct
application of the importance sampling is not feasible since
the limit state functions and the design point are not known
(Melchers 1987).

Therefore, to develop an efficient procedure of system re-
liability evaluation for ductile frame structures, the obstacle in
failure mode identification and the failure probability compu-
tation should be avoided.

ESTABLISHMENT OF PERFORMANCE FUNCTION

As described previously, the definition of performance func-
tion in (1) has the following weaknesses:

1. All or part of the failure modes and their performance
functions are needed, and it is not always easy to identify
them.

2. It is difficult to compute the failure probability even
when the failure modes are known, because of the dif-
ficulty in obtaining the sensitivity of performance func-
tion and the correlation among the failure modes.

To avoid these weaknesses, one may readily associate to
define the performance function as shown in (2).

G=d.—dM,P) 2)

where d, = threshold value; and d(M, P) = deformation of the
ductile frame. The definition of threshold value d, and the
computation of ductile deformation d(M, P) will be needed,
the simplicity of limit analysis will be lost, and also, it does
not include the characteristics of the system reliability.

To define a performance function without these weaknesses
on the base of the assumptions described in the previous sec-
tion, one can firstly observe the limit state function under only
one load P. Because the structure will become a kinematically
admissible mechanism when the load P increases to the utmost
load, the performance function can be described as

GM, P)=us(M) — P 3)

where up(M) = utmost load. The value of us(M) is dependent
on M, and a different failure mode may happen with different
M.

In limit analysis, the limit load is generally described as the
times of initial load and a load factor; therefore, (3) can be
described as follows:

GM,P)=\(M, PP — P “)

where A(M, P) = load factor; and P = initial load.

In (4), the amount of P does not influence the shape of the
limit state surface G(M, P) = 0; therefore, the same reliability
analysis results will be obtained if it is written as follows:

GM,P)=\(M, P) — 1 &)}

For multiple load, the limit state function is defined in the
load space, and it cannot be dealt with as (4). One can divide
the load space into various load paths and consider one load
path. For example, for a frame structure with two load P =
[P, P,], considering a load path P(8,) where 6, is defined as
120, = P,/P,, the utmost load will be reached when the load
increased along this load path. The performance function can
be written as follows, as already described:

G:M, P) = \M, P)P(8) — P(8) ©6)

where A(M, P) = load factor; and P(8,) = load path.
In (6), the amount of P(8,) does not influence the shape of
the limit state surface G(M, P) = O; therefore, the same reli-

ability analysis results will be obtained if it is written as fol-
lows:

GM,P)=xM,P) -1 €)]

Different failure modes will happen with different M and
different load path P(6,), but (7) always holds true with any
load path. With given (M, P), only one value of A(M, P) can
be obtained, and (7) is the general form of performance func-
tion for ductile frame structures.

Because utmost load is obtained as the minimum load of
formulating a kinematically admissible mechanism, the values
of (1) and (6) are the same, i.e., limit state surface expressed
by (1) and (7) are the same, although their performance func-
tions are different. The limit state surface expressed by (7) is
the inner connotative surface of the limit state surfaces cor-
responding to all the failure modes.

Limit Analysis

To obtain the load factor, limit analysis is conducted using
compact procedure (Aoyama 1988). In this procedure, the
equilibrium equation is taken to be the object function, and
the utmost strength is taken as the limit condition. The mech-
anisms can be identified from the structural analysis when the
total stiffness matrix become singular. The limit analysis is
defined as a problem of obtaining the maximum load factor
that satisfies the equilibrium equation and the limit condition
using the linear programming method. The equilibrium equa-
tion is described as

AP =HR (8)

where P = load vector; A = load factor; R = vector of member
moment; and the utmost value of R is the vector of moment
capacities M. H is the coefficient matrix of the equilibrium
equation.

The Gauss-Jordan method (Livesley 1976) is applied to
solve (8), and the following two steps are repeated until the
load factor N reaches its maximum. Then A(M, P) in (7) will
be obtained.

In step 1, divide R into fundamental variables and nonfun-
damental variables according to the contents of H. Change the
fundamental variables. Increase the load factor until the utmost
value (moment capacity) of a fundamental variable is reached.

In step 2, in order to increase the load factor further,
exchange the fundamental variables and the nonfundamental
variables.

APPLICATION OF RESPONSE SURFACE APPROACH

Although the form of (7) is very simple, it includes a com-
plicated function A(M, P). The function has no explicit form,
and it is difficult to obtain its sensitivity. To avoid these prob-
lems, the response surface approach will be applied.

Response Surface Approach

The response surface approach is a collection of statistical
analysis methods that examine the relationship between ex-
perimental response and variations in the values of input var-
iables. Developed by research scientists performing experi-
ments in biology and agriculture (Box et al. 1978; Draper and
Smith 1981), it has been applied to create and analyze the
statistical model of performance function in structural reli-
ability that is difficult for many researchers to study directly.

In reliability analysis of practical structures, the perfor-
mance function G(X) is generally described only by using im-
plicit forms; here, X = {M, P} expresses the vector of random
variables. In this case, it is time-consuming to evaluate the
probability of the limit state being exceeded. The basic concept
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of the so-called response surface approach is to replace the
original implicit performance function with an approximated
explicit function in terms of basic random variables. With an
eye toward the accuracy as well as the high cost of repeated
computation of G(X), second-degree polynomials are gener-
ally used (Wong 1984, 1985; Bucher et al. 1988; Bucher and
Bourgund 1990; Faravelli 1989). For simplification, the fol-
lowing equation is used in this paper:

G’=a+§n:b,x,+$c,x,2 )

=l im}

where a, b,, ¢, = progressive coefficients with number of 2n
+ 1; and # = number of random variables.

To improve the accuracy of the response surface approach,
Bucher and Bourgund (1990) suggested an alternative process
of selecting the fitting points. In the first step of this algorithm,
the mean vector is selected as the center point, then the re-
sponse surface obtained is used to estimate the design point.
In the next step, the new center point is chosen on a straight
line from the initial center point to the design point obtained
so that G(X) = O at the new center point from liner interpo-
lation, i.e.

G(w)
G(p) — GXp)

where W = mean vector; and Xp, X,, = design point and new
center point, respectively.

This process is assumed to guarantee that the fitting points
chosen from the new center point include the information of
the original failure surface sufficiently. Some improvements
have been proposed (Rajashekhar and Ellingwood 1993; Liu
and Moses 1994; Yao and Wen 1996).

The suggested fitting points for obtaining G'(X) lie along
the x-axis. The points chosen are mean values of the random
variables and x, = p; * d,0;, in which d; is an arbitrary factor
and o, is the standard deviation of x;. The progressive coeffi-
cients are determined using (2n + 1) values of G(X) at these
points.

Xpu=p + Xp — p) (10)

Computation of Failure Probability

After the approximated performance function is determined,
the FORM can be easily applied to obtain the Hosefer-Lind
reliability index, because the sensitivity coefficient can be ob-
tained directly from (9). Because (9) is an approximation of
the inner connotative surface of the limit state surfaces cor-
responding to all the failure modes, the HL reliability index
of (9) is equivalent to that of the most likely failure mode (the
failure mode that has the minimum Hosefer-Lind reliability
index). Therefore, to capture the effect of other failure modes
and evaluate system reliability of frame structures properly,
reliability corresponding to (9) should be evaluated relatively
accurately. The second-order reliability method or importance
sampling method is not difficult to apply to obtain the failure
probability, because the design point has been obtained by
FORM. For convenience, the following empirical reliability
index (Zhao and Ono, to be published, 1997) is used in this

paper:

K 1
- + = >
5 [1 3BF+3(n—1)/K,+1] Brt 3K K=0
s=
K |41k K, <0
3n-Be+HfTT 27 ’
an

where K, = sum of the principle curvatures of the limit state
surface described as
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FIG. 1. Flowchart of Procedure
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where U* = design point in u-space; VG = gradients of G;
V’G = second derivatives of G; n = number of random vari-
ables; Br = first-order reliability index; By = second-order re-
liability index; a = directional vector at design point in u-
space; B = Hessian matrix at design point in u-space; and b
= diagonal element of B.

The flowchart of the proposed procedure is illustrated in
Fig. 1, which includes two steps. The first step is evaluating
the maximum load factor using compact procedure and deter-
mine the progressive coefficients in (9). The second step is
computing the reliability index by FORM/SORM.

Because of the introduction of performance function (7), it
also becomes easy to conduct reliability analysis of ductile
frame considering geometric second-order effects, if one re-
places the limit analysis by second-order limit analysis.

Needless to say, because the performance function of (7) is
approximated by a second-degree polynomial, the procedure
is not applicable if the limit state surface has the shape of a
sawtooth. But generally, there is a large number of potential
failure modes; the fear of limit state surface of sawtooth shape
is almost not necessary. As described in the next section, the
proposed procedure generally gives accurate enough results
whether there is a dominant failure mode or not.

COMPUTATIONAL EXAMPLE AND INVESTIGATION
First Example

Because the performance function of ductile frame is gen-
erally defined as the minimum value of performance functions
corresponding to the failure modes, and in order to investigate
the efficiency of the proposed procedure, the performance
function in the first example is defined as the minimum value
of eight linear performance functions listed in Table 1, and the
limit state surface is shown in Fig. 2. Assume x,, x, are in-
dependent standard normal random variables.

The performance function is approximated using the sec-
ond-degree polynomial defined in (7). The center point is
taken to be the mean value of the random variables, and the
other fitting points are taken to be the points that have distance
o from the center point.



The convergency is reached in four iterations with tolerance
criteria of |(B; — Bi-1)/B:] < 1073, in which B, is the first-order
reliability index obtained in ith iteration. The performance
functions obtained during the four iterations are listed in Table
2, and the corresponding response surfaces are shown in Fig.
2. From these results, one can see:

1. The reliability index obtained in the first iteration, 2.991,
is not sufficient as the approximation of the minimum
reliability index listed in Table 1. The reliability index
obtained in the fourth iteration, 2.831, is quite near to
2.828, which is the minimum value of the reliability in-
dex listed in Table 1. Therefore, to obtain the approxi-
mate value of the reliability index, it is necessary to con-
duct the iteration up to convergency.

2. From Fig. 2, one can see that the obtained response sur-
face is a good approximation for the inner connotative
line of the eight limit state lines.

3. The design point of the response surface obtained in the
fourth iteration is [—2.09, 1.91]; it is matching the design
point [—2.0, 2.0] corresponding to the minimum reli-
ability index listed in Table 1.

TABLE 1. Performance Function of First Example

Performance function Design point B

(1) 2 3)
G =1dx, — 2x, + 72 —1.691, 2.416 2.949
G,=2x, — 2x, + 8 —2.000, 2,000 2.828
Gy =26x, — 2, + 93 —2.247, 1.729 2.835
Gy=—15x, — 2x, + 10 2.400, 3.200 4.000
Gs =4x, — 2x, + 14 —2.800, 1.400 3.130
Gs=0.7x; — 2x, + 6.8 —1.060, 3.029 3.209
G, = ~0.5x — 2x, + 8 0.941 3.765 3.881
Gy=~2x; — 2x, + 11 2.750, 2.750 3.889

Note: G = min{G,, G,, Gs, G,, Gs, Gs, G;, Gg).
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FIG. 2. Response Surfaces in First Example

TABLE 2. Response Surface Function and lts FORM Compu-
tational Resuits

Iteration
number | Performance function| B P, Design point
(1) (2) (3) 4) 6
1 Gl =68 + 0.85x, 2.991(1.391 X 107°| —1.668, 2.483

— 2x; — 0.15x3%
2 Gl = 6.944 + 0.783x,|2.817|2.422 X 107%| —2.103, 1.875
= 2x, — 0.35x}

— 2.384 X 1072
3 Giu = 6897 + 0.74x, |2.832|2.311 X 107%| —2.091, 1.911
— 2x, — 0.35x2

- 1.192 X 1077x3
4 Gin = 6.898 + 0.741x, | 2.831(2.317 X 107* —2.090, 1.910
- 2x, — 0.35x?

g
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FIG. 3. Reliabllity Index with Different Fitting Points
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FIG. 4. Convergency with Different Fitting Points

Monte Carlo simulation for the performance function listed
in Table 1 with 100,000 samples is conducted. The failure
probability Pr is obtained as 2.93 X 107 with its standard
deviation of 1.71 X 107*. The corresponding reliability index
of the Monte Carlo simulation is obtained as 2.76. Using the
obtained final performance function listed in Table 2, the
SORM result using (11) can be given as By = 2.773. One can
see the SORM reliability index is close to that of Monte Carlo
simulation.

In order to investigate the affection of fitting points, reli-
ability indices obtained with different fitting points are shown
in Fig. 3, where d is the distance from the center point de-
scribed as the times of standard deviation. From Fig. 3, one
can see that the reliability indices obtained with different fit-
ting points (different d in the figure) almost coincide with the
minimum value obtained by FORM, that is to say, the reli-
ability index obtained by the proposed method is almost not
affected by the fitting points. To investigate the convergency
of the procedure, the stage reliability indices obtained in each
iteration are shown in Fig. 4, from which one can see that
although the reliability indices in the first iteration are much
different with different fitting points, the final reliability indi-
ces are kept almost the same with the different fitting points.

Second Example

The second example is a frame structure of one story and
one bay, shown in Fig. 5 with the probabilistic member
strength and load listed in Table 3. For comparison, the failure
mode and the corresponding performance functions obtained
from stochastic limit analysis (Ono et al. 1997) are listed in
(13):

G =M, + 3M, + 2M, — 155, — 10S;; (B =3.551) (13q)
G, =2M, + 2M, — 158;; (B = 3.247) (13b)

Gi=M, + M, + 4M; — 155, — 10S5,; (B =3.848) (13¢)
Ge=2M, + M, + M, — 155;; (B=3.562) (13d)

Gs=M, + M, + 2M; — 155,; (B = 3.784) (13¢)

Ge=M, +2M, + M, — 155,; (B =3.562) (13f) -

where all the probabilistic member strength and load are as-
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FIG. 5. One-Story One-Bay Frame

TABLE 3. Variables in Second Example

Coefficient of
Variables Mean variation
(1) 2) (3)
M, M, 500 0.15
M, 667 0.15
M 50 0.30
S, 100 0.10

sumed to be lognormal random variables. The values in the
parentheses are the FORM reliability index corresponding to
each failure mode. The most likely collapse mode is G, with
the minimum FORM reliability index of 3.247, and it is dom-
inant to other modes.

The reliability evaluation is conducted using the proposed
method shown in Fig. 1. The performance functions listed in
(13) are only for comparison; they need not be used in the
procedure. The performance function of (7) is used and A(M,
P) is obtained by limit analysis.

To investigate the convergency of the procedure, the com-
putations are conducted with different fitting points. The num-
ber of iterations used in each computation, the obtained re-
sponse surface function, and the corresponding FORM results
are listed in Table 4, where dyo is the distance from fitting
points in M axes to center point, and dso is that in S axes to
center point. Different dyo and dso express different fitting
points.

From Table 4, one can see that the computations reach con-
vergency in few iterations in all cases of different fitting
points. Although there are some slight differences among the
response surfaces obtained with different fitting points, all of
the response surfaces are similar to the performance function
corresponding to the most likely collapse mode G, in the fol-
lowing characteristics:

1. They only contain the basic variable of M;, M,, S,.

2. The coefficients of M, and M, are the same.

3. All the FORM reliability indices corresponding to all the
response surfaces are almost the same. They are equal to
or nearly equal to 3.247, which is the same as the min-
imum value listed in (13).

Monte Carlo simulation for limit analysis with 100,000 sam-
ples is conducted. The failure probability Pr and the corre-

sponding reliability index are listed in Table 4, from which
one can see that the reliability index 3.247 obtained from the
response surface approach is almost the same as the result of
3.25 obtained by the Monte Carlo simulation, because in this
example, the most likely failure mode G, is dominant to other
failure modes.

Third Example

The third example is a frame structure with two stories and
two bays as shown in Fig. 6, with the probabilistic member
strength and load listed in Table 5. For comparison, the failure
modes and the corresponding performance functions are listed
in (14):

G, =2M, + 2M, + 2M; — 155, — 1555 (Bmn=3.100) (l4a)
G, =M, + M, + 2M, — 1085, (B =3.205)  (14b)

G, =M; + 3M, — 10S; (B =3.291) (14¢)
G, =M, + 3M; — 10Ss; (B =3.304) (144)

G, =2M, + 2M, + M, + M, — 158, — 155,; (B = 3.681)
(14¢)

Gs = Ms + 3M, + 2M; — 155;; (B =3.725) (14f)

where the figures in the parentheses are the FORM reliability
indices corresponding to each failure mode. The most likely
collapse model is G; with the minimum FORM reliability in-
dex of 3.100. There is no significant dominant collapse mode
in this example.

Using the proposed procedure, the computation reaches the
convergency in few iterations, and the obtained response sur-
faces with different fitting points are listed in Table 6, with
FORM/SORM reliability index [obtained using (11)] corre-
sponding to each response surface.

From Table 6, one can see that despite the case of dy, = d;
= 1.0, in general cases, the response surfaces obtained with
different fitting points are all similar to the performance func-
tion corresponding to the most likely collapse mode G, in the
three characteristics described in Example 2. The FORM re-
liability indices corresponding to the response surfaces are ap-
proximately equal to 3.100, which is the minimum FORM
reliability index listed in (14).

Monte Carlo simulation for limit analysis with 100,000 sam-
ples is conducted. The failure probability Pr and the corre-

Ss
Sy y
Mg
Mg M, 15
s
S; ¢S3 ¢ 4
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- e
e 20 l 20 |

r T 1

FIG. 6. Two-Story Two-Bay Frame In Third Example

TABLE 4. Response Surfaces Obtained with Different Fitting Points in Second Example

Fitting Point Response Surface Approach
duo dso Response surface Bs Pe lterations
(1) (2) (3) (4) (5) {6)
1.00 1.00 10°G’ = 10,330 + 11.3M, + 11.3M, — 2595, + 0.73452 3.247 5.837 x 107* 6
1.00 0.5¢ 10°G’' = 10,460 + 11.3M, + 11.3M, — 259S, + 0.73352 3.247 5.828 x 1074 6
0.5¢0 1.00 10°G’' = 11,978 + 11.9M, + 11.9M, — 293S, + 0.870S? 3.240 5.980 x 107* 7
1.60 1.60 10°G’ = 7,060 + 11.4M, + 11.4M, — 205S, + 0.508S5? 3.247 5.837 X 107* 8

Note: Monte Carlo simulation of limit analysis: B = 3.25; Pr = 5.7 X 107% 0p, =75 X 1075,
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sponding reliability index are listed in Table 6, from which
one can see that almost all the reliability indices obtained from
the response surface approach are close to the result of 2.82
obtained by the Monte Carlo simulation, i.e., the response sur-
face can be accepted as the approximated limit state surface
of the frame structure and the reliability index can be accepted
as that of the structural system.

In the case of dy = ds = 1.0, the obtained response surface
is similar to the performance function of G; in the following
characteristics:

1. It only contains the basic variable of M,, M;, S,.
2. The coefficient of M is three times of that of M.
3. The reliability indices are nearly the same.

That is to say, the response surface is locally converged into
the limit state surface G;. In fact, the possibility of local con-
vergency is a common weakness of an iteration method such
as FORM. This is the precaution one needs to take when using
this method. To avoid this weakness, one should check the
obtained design point using different fitting points.

Fourth Example

The fourth example is a practical frame structure with six
stories and three bays as shown in Fig. 7, with the probabilistic

TABLE 5. Random Variables in Third Example

Variables Distribution Mean Coefficient of
(1) 2) (3) variation
M, —M, Lognormal 7 0.15
M, M, Lognormal 70 0.15
M, Lognormal 150 0.15
M, Lognormal 120 0.15
M, Lognormal 90 0.15
M Lognormal 5 0.25
S, Lognormal 10 0.25
Ss Lognormal 26.5 0.15
M Lognormal 18 0.25
Ss Lognormal 14 0.25
S, -
MZ M‘ M! §_ [-
S, T o 4_
s, Me %
— W, §4r
M, M, 3
S, 3
M, §
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FIG. 7. Six-Story Three-Bay Frame in Fourth Example

member strength and load listed in Table 7. The reliability
evaluation is conducted using the proposed method with fitting
points of dy = ds = 1.00. The computation reaches conver-
gency in four iterations, and the response surface is obtained
as

10°G’ = 6,384 + 16.3M, + 16.3M, + 16.3M, + 16.3M,
+ 16.3M,; + 8.16M,, + 8.16M,5s — 32.95, — 69.8S,
— 115.25, — 180.8S; — 407.6Ss + 0.09953
+ 0.3975; + 0.8955% + 1.6045% + 2.766S? (15)

From (15), one can see that the response surface function
only contains the basic variables of M,, M,, M,, M,,, M5, M,.,
M15, Sz, Sg, S4, Sg, Sg. The coefficients of M], M4, M7, MlO: M|3
are the same, and those of My, M, are the same. From these
variables included in the performance function (15), one can
understand the sections where plastic hinges formed, and can
obtain the most likely failure mode as shown in Fig. 8. Using
the equation of virtual work, the performance function corre-
sponding to the failure mode is obtained as (16). The same
results are also obtained using stochastic limit analysis.

Gun = 2M, + 2M, + 2M; + 2M,; + 2M,; + M\, + M,
— 3.85;, — 7.68, — 11.48, — 15.255; — 195 (16)

All the characteristics of (15) described previously can be
also found in (16). The FORM reliability index corresponding
to (15) is equal to 2.640, while that corresponding to (16) is
equal to 2.651, i.e., (15) and (16) have similar FORM reli-
ability indices. That is to say, the procedure can be also used
to obtain the most likely failure mode of frame structures.

The influences by fitting points are also checked with the
results listed in Table 8, from which one can see that the com-
putational results are almost not influenced by fitting points.

In order to check the results of response surface approach,
a Monte Carlo simulation for limit analysis with 10,000 sam-
ples is conducted. The failure probability P, and the corre-
sponding reliability index are listed in Table 8, from which
one can see that all the reliability indices obtained from the

- e L

FIG. 8. Most Likely Fallure Mode in Fourth Example

TABLE 6. Response Surfaces Obtained with Different Fitting Points in Third Example

Fitting Point Response Surface Approach

dyo dso Response surface FORM SORM lterations

(1) (2 (3) 4) (5) (6)

1.00 1.00 |10°G’ = 112,336 + 30.7M,; + 92.2M; — 983.4S, B=3224; P-=6324 X 1078 = 2.839; P, = 2.261 X 10~* 4
+ 10.18%

0.80 130 ]10°G' = 7,047 + 54.4M, + 54.4M, + 54.4 M, B =3.095; P-=9.831 X 107*| B = 2.935; P, = 1.666 X 10~* 4
— 620.28, — 1,082S, + 16.85? + 17.75}

1.0c L5c |10°G’ = 7,419 + 54.1M, + 54.1M; + 54 1M, B=3.094; P,=9.878 X 10™*|B = 2.936; Pr = 1.659 X 10 7
— 613.55, — 1,103S, + 16.657 + 17.952

1.5¢ 1.5¢ |10°G’ = 7,419 + 54.1M, + 54.1M, + 54.1M, B=3.094; P-=9.878 X 107™*]B =2.938; P, = 1.648 X 107° 8
— 613.55, — 1,103, + 16.657 + 17.952

Note: Monte Carlo simulation of limit analysis: 8 = 2.82; Py = 241 X 107 gp, = 1.6 X 107%,
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TABLE 7. Random Varlables in Fourth Example

Coefficient

Variables Distribution Mean of variation
M ] (3 4
M, My, My, Myq, My, Lognormal 908t — m 0.1
M, M, Mg, M, Lognormal | 1452t — m 0.1
Mgy, My, My, My, Lognormal | 1452t — m 0.1
Mo, M3, My Lognormal | 103.4r — m 0.1
My, Mo, My, Lognormal | 162.8¢ — m 0.1
M5, My5, My Lognormal | 162.8t — m 0.1
M Lognormal 2.5t 0.5
S, Lognormal 5.0t 0.5
Ss Lognormal 7.5¢ 0.5
Ss Lognormal 10.0¢ 0.5
Ss Lognormal 12.5¢ 05
Ss Lognormal 15.0¢ 0.5

TABLE 8. Computational Results for Fourth Example

Fitting Point Response Surface Approach

dyo | dso FORM SORM

Mm@ (3 4)

1.00 | 1.00 | B =2.640; Pr=4.14 X 107 |B = 2.51;1; Pr = 5.962
X 107

1.50 | 030 | B =2.651; P,=4.02 X 107 |B = 2.589; Pr = 4858
x 107

1.20 | 0.50 | B =2.650; P.=4.02 X 107 |B = 2.5831; Pr=4931
X 107

08c | 0.80 | p=2.647; P, =402 X 107 |B = 2.5438; Pr=5423
X 107

Note: Monte Carlo simulation of limit analysis: B = 2.550; P = 5.3
X 107% 0p, = 7.3 X 107,

response surface approach are close to the result of 2.55 ob-
tained by the Monte Carlo simulation, i.e., the response surface
can be accepted as the approximated limit state surface of the
framed structure and the reliability index can be accepted as
that of the structural system.

CONCLUSIONS

A performance function that is independent of failure mode
and load path is defined and a system reliability evaluation
procedure is proposed. It is found that:

1. To obtain the approximate value of the reliability index,
it is necessary to conduct the iteration to convergency.

2. The response surface approach can give a good approx-
imation of the inner connotative surface of the limit state
surfaces. The proposed procedure can be also used to
obtain the most likely failure mode of frame structures.

3. The FORM reliability index corresponding to the re-
sponse surface is a good approximation of the FORM
reliability index corresponding to the most likely col-
lapse mode. To heighten the evaluation accuracy of sys-
tem reliability, SORM needs to be used. Basically,
SORM is capturing the effects of failure modes other
then the most likely failure mode.

4. Although there are some slight differences among the
response surfaces obtained with different fitting points,
reliability evaluation results are almost the same, i.e., the
reliability results are generally not significantly influ-
enced by fitting points.

5. The proposed procedure has good efficiency and enough
accuracy. The difficulty in both the failure mode identi-
fication and the failure probability computation can be
avoided.

6. There is a slight fear of local convergency in the pro-
posed procedure. To ensure its accuracy and reliability,
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one needs to check the results using different fitting
points.
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APPENDIX ll. NOTATION

The following symbols are used in this paper:

B = Hessian matrix at design point in u-space;
b; = diagonal element of B;
d, = threshold value;
dM, P) = deformation of the ductile frame;
dyo = distance from fitting points in M axes to center

point;

dso'

GM, P)

PPrmedGHT g B XD

distance from fitting points in S axes to center
point;

performance function corresponding to ith failure
mode;

coefficient matrix of the equilibrium equation;

sum of the principle curvatures of the limit state sur-
face;

vector of moment capacities of the structure;
number of random variables;

load vector;

failure probability;

vector of member moment;

design point in u-space;

{M, P) expresses the vector of random variables;
directional vector at design point in u-space;
reliability index;

first-order reliability index;

second-order reliability index;

load factor;

standard deviation;

standard deviation of failure probability;

gradients of G; and

second derivatives of G.
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