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THIRD-MOMENT STANDARDIZATION FOR STRUCTURAL

RELIABILITY ANALYSIS

By Yan-Gang Zhao1 and Tetsuro Ono2

ABSTRACT: First- and second-order reliability methods are generally considered to be among the most useful
for computing structural reliability. In these methods, the uncertainties included in resistances and loads are
generally expressed as continuous random variables that have a known cumulative distribution function. The
Rosenblatt transformation is a fundamental requirement for structural reliability analysis. However, in practical
applications, the cumulative distribution functions of some random variables are unknown, and the probabilistic
characteristics of these variables may be expressed using only statistical moments. In the present study, a
structural reliability analysis method with inclusion of random variables with unknown cumulative distribution
functions is suggested. Normal transformation methods that make use of high-order moments are investigated,
and an accurate third-moment standardization function is proposed. Using the proposed method, the normal
transformation for random variables with unknown cumulative distribution functions can be realized without
using the Rosenblatt transformation. Through the numerical examples presented, the proposed method is found
to be sufficiently accurate to include the random variables with unknown cumulative distribution functions in
the first- and second-order reliability analyses with little extra computational effort.
INTRODUCTION

The structural reliability problem is often formulated in
terms of a vector of basic random variables X = [x1, . . . , xn]

T,
which represent uncertain quantities, such as loads, environ-
mental factors, material properties, structural dimensions and
variables introduced in order to account for modeling and pre-
diction errors, and the performance function G(X) describing
the limit state of the structure in terms of X. The probability
of failure is given by the n-fold integral

P = f (X) dX (1)f E
G(X)#0

in which f (X) = joint probability density function (PDF) of X.
Difficulty in computing this probability has led to the de-

velopment of various approximations (Madsen et al. 1986).
The first-order reliability method (FORM), a full-distribution
reliability method, is considered to be among the most useful
for computing structural reliability (Bjerager 1991). Over the
past three decades, contributions from numerous studies have
brought FORM to fruition as a reliability method (Hasofer and
Lind 1974; Rackwitz 1976; Shinozuka 1983), and many reli-
ability methods based on FORM have been developed. These
include the second-order reliability method (SORM) (Breitung
1984; Der Kiureghian et al. 1987; Der Kiureghian and De
Stefano 1991; Cai and Elishakoff 1994), importance sampling
Monte Carlo simulation (Melchers 1990; Fu 1994), first-order
third-moment reliability method (FOTM) (Tichy 1994), and
response surface approach (Rajashekhar and Ellingwood 1993;
Liu and Moses 1994). In almost all of these methods, the basic
random variables are assumed to have a known cumulative
distribution function (CDF) or probability density function
(PDF). Based on PDF/CDF, the normal transformation (x-u
transformation) and its inverse transformation (u-x transfor-
mation) are realized by using the Rosenblatt transformation
(Hohenbichler and Rackwitz 1981). In reality, however, due
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to the lack of statistical data, the PDF/CDFs of some basic
random variables are often unknown, and the probabilistic
characteristics of these variables are often expressed using
only statistical moments. Under such a condition, the Rosen-
blatt transformation cannot be applied, and a strict evaluation
of the probability of failure is not possible. Thus, an alternative
measure of reliability is required.

The first thorough study on structural reliability under
incomplete probability information was performed by Der
Kiureghian and Liu (1986). Most previous studies of this sub-
ject dealt with second-moment methods, in which only the
mean values and standard deviations of the basic random var-
iables are known (Ang and Cornell 1974; Hasofer and Lind
1974; Ditlevsen 1979; Madsen et al. 1986). In such a case, the
variables are commonly transformed into a set of standard var-
iables having zero means and unit standard deviation. A com-
prehensive framework for the analysis of structural reliability
under incomplete probability information was proposed by Der
Kiureghian and Liu (1986), in which incomplete probability
information on random variables, including moments, bounds,
marginal distributions, and partial joint distributions, is incor-
porated in reliability analysis under stipulated requirements of
consistency, invariance, operability, and simplicity. The pro-
posed method was found to be consistent with full distribution
structural reliability theories and has been used to measure
structural safety under imperfect states of knowledge (Der
Kiureghian 1989).

When the PDF/CDF of a random variable is unknown, an
approach based on the Bayesian idea, in which the distribution
is assumed to be a weighted average of all candidate distri-
butions. In this type of modeling, the weights represent the
subjective probabilities of each candidate distribution being
the true distribution, as suggested by Der Kiureghian and Liu
(1986). For a variable x1 with k candidate distributions F1i(x1),
i = 1, . . . , k, the Bayesian distribution is written in the form
of

k

F (x ) = p F (x ) (2)1 1 1i 1i 1O
i=1

in which p1i, satisfying p1i = 1, are the weights. Further-k( i=1

more, all candidate distributions are assumed to have the same
mean and variance because these are assumed to be known
quantities.

After obtaining the distribution in (2), the reliability analysis
can be conducted in a manner similar to the full distribution
structural reliability theories such as FORM/SORM. However,
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the problem arises as to how to select the candidate distribu-
tions and the weights. Recently, a method of estimating com-
plex distributions using B-spline functions has been proposed
(Zong and Lam 1998), in which the estimation of PDF is sum-
marized as a nonlinear programming problem.

In FORM/SORM, the PDF/CDF is only used to determine
the x-u and u-x transformations. Therefore, if the transforma-
tion functions can be obtained by other means, FORM/SORM
will be possible without using PDF/CDF. In the present paper,
for random variables with unknown PDF/CDF, the x-u and
u-x transformation functions will be directly built using statis-
tical moments, which are generally available from the statis-
tical data of the random variables.

x-u AND u-x TRANSFORMATIONS USING
HIGH-ORDER MOMENTS

Edgeworth and Cornish-Fisher Expansions

For a random variable x with CDF F and a standard normal
random variable u, let

F(x) = F(u) (3)

where F is the CDF of u and the Rosenblatt transformation is
used to solve this equation for u in terms of x, or for x in
terms of u.

In order to realize the x-u and u-x transformations without
using the PDF/CDF of x, the Edgeworth and Cornish-Fisher
expansions (Stuart and Ord 1987) can be applied for cases of
mild nonnormality (Appendix I). For a standardized random
variable

x 2 m
x = (4)s

s

in which m and s are the mean value and standard deviation,
respectively, of x, the x-u transformation is approximately
given by

1 1 121 2u = F F(x ) 2 f(x ) a h 1 (a 2 3)h 1 a hs s 3 2 4 3 3 5H F6 24 72

1 1 13 2 21 h a 1 h (a 2 3) 1 h a (a 2 3)8 3 7 4 9 3 41,296 1,152 1,728

1 41 h a11 3GJ31,104 (5)

using the first four polynomials of the Edgeworth expansion
(Appendix I)

1 12 3u = x 2 a (x 2 1) 2 (a 2 3)(x 2 3x )s 3 s 4 s s6 24

1 12 3 4 21 a (4x 2 7x ) 1 a (a 2 3)(11x 2 42x 1 15)3 s s 3 4 s s36 144

1 3 4 22 a (69x 2 187x 1 52)3 s s648

1 2 5 31 (a 2 3) (5x 2 32x 1 35x )4 s s s384

1 2 5 32 a (a 2 3)(111x 2 547x 1 456x )3 4 s s s864

1 4 5 31 a (948x 2 3,628x 1 2,473x )3 s s s7,776 (6)

and using the first four polynomials of the inverse Cornish-
Fisher expansion (Appendix I). In (5) and (6), hj, j = 1,
2, . . . , 11 is the jth Hermite polynomial, and a3 and a4 are
the 3rd and 4th dimensionless central moments (the 1st and
2nd moment ratios), respectively. These parameters are in fact
the skewness and kurtosis, respectively, of xs, which, accord-
ing to the definition of probability moments, are equal to those
of x.

The u-x transformation is approximately given by

1 12 3x = u 1 a (u 2 1) 1 (a 2 3)(u 2 3u)s 3 46 24

1 12 3 4 22 a (2u 2 5u) 2 a (a 2 3)(u 2 5u 1 2)3 3 436 24

1 3 4 21 a (12u 2 53u 1 17)3324

1 2 5 32 (a 2 3) (3u 2 24u 1 29u)4384

1 2 5 31 a (a 2 3)(14u 2 103u 1 107u)3 4288

1 4 5 32 a (252u 2 1,688u 1 1,511u)37,776 (7)

using the first four polynomials of the Cornish-Fisher expan-
sion (Appendix I).

An alternative u-x transformation can be derived by Hermite
models (Winterstein 1985; Winterstein and Bjerager 1987),
where xs is expanded into Hermite series. A transformation
somewhat analogous to the Cornish-Fisher expansion (Win-
terstein 1985) and a formula that has the same form as the
first three terms of (7) have been proposed by Winterstein
(1985).

Eqs. (5)–(7) give the explicit u-x and x-u transformations
without using the PDF/CDF. The investigations presented in
this paper will show that, although (5)–(7) are quite compli-
cated, their accuracy is not better than the method developed
in the present paper.

High-Order Moment Standardization Technique

Another rational and practical approach in this case is to
build direct x-u and u-x transformation functions using the
high-order moment standardization technique (HOMST) (Ono
and Idota 1986), which involves the use of the following trans-
formation:

k

j21u = S (x) = a x (8)x jO
j=1

where aj, j = 1, . . . , k, are deterministic coefficients that are
obtained by setting the first k central moment of Sx(x) equal
to those of the standard normal random variable.

In a particularly common case, the third-moment standard-
ization function for the standardized random variable xs in (4)
is assumed to be (Ono and Idota 1986)

2y = x 1 cx (9)s s

y 2 my
u = (10)

sy

in which c is determined by setting the skewness of y equal
to that of the normal random variable, that is, c can be deter-
mined using the following equation:

3 3 2a s = (a 2 3a 1 2)c 1 3(a 2 2a )c3y y 6x 4x 5x 3x

1 3(a 2 1)c 1 a = 04x 3x (11)

Since the use of the 5th and 6th moments is uncommon in
engineering, assuming ucu << 1 according to the investigation



by Ono and Idota (1986) in the cases of mild nonnormality,
an approximate third-moment standardization function is given
as (Zhao and Ono 1999b)

1 2u = (a 1 3(a 2 1)x 2 a x ) (12)3 4 s 3 s
a

where

2a = (9a 2 5a 2 9)(a 2 1) (13)Ï 4 3 4

Using (12), the approximate u-x transformation function
based on third-moment standardization is obtained as

1 2x = 3(a 2 1) 2 9(a 2 1) 1 4a (a 2 ua) (14)Ïs 4 4 3 3F G2a3

When the assumption ucu << 1 in (12) and (14) is not sat-
isfied, the equations will not be accurate.

Accurate Third-Moment Standardization Function

Using (8) to obtain the kth moment standardization function,
the k(k 2 1)th central moment of x must be determined. Even
for the third-moment standardization, the first six moments of
x must be determined, and, as such, the standardization be-
comes complicated and obtaining the accurate standardization
function becomes difficult. Since the x-u and u-x transforma-
tions form a pair, one transformation can be obtained from the
other. In the present paper, the transformations are built from
a u-x transformation that is assumed to be in the following
form:

k

j21x = S (u) = a u (15)s u jO
j=1

where aj, j = 1, . . . , k, are deterministic coefficients that are
obtained by making the first k central moment of Su(u) to be
equal to that of xs.

Using (15), to obtain the kth moment standardization func-
tion, only the first k central moments of xs are needed. For the
third-moment standardization, the u-x transformation is ex-
pressed as

2x = S (u) = a 1 a u 1 a u (16)s u 1 2 3

Making the first three central moments of Su(u) equal to
those of xs, a1, a2, and a3 are obtained as (Appendix II)

p 1 uuu
a = 2a = 6 2 cos (17)Ï3 1 F G3

2a = 1 2 2a (18)Ï2 3

where

28 2 aÏ 3
u = arctan (19)S Da3

The signs in (17) are taken to be the sign of a3 (Appendix II).
From (19), in order to make (16) operable, a3 should be

limited in the range of

22 2 # a # 2 2 (20)Ï Ï3

Skewnesses of some commonly used random variables are
listed in Table 1. These values show that almost all the skew-
nesses are in the range of (20); that is to say, (16) is generally
operable in engineering.

Particularly if a3 = 0, then uuu is obtained as p/2, and a1,
a2, and a3 will be obtained as a1 = a3 = 0 and a2 = 1 and the
u-x transformation function will then degenerate as xs = u.

From (16), the x-u transformation is readily obtained as
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TABLE 1. Skewness of Some Common Distributed Random
Variables

Distribution
(1)

Coefficient
of variation

(2)
Skewness

(3)

Lognormal 0.1
0.2
0.4
0.6
0.7

0.301
0.608
1.264
2.016
2.443

Exponential 1.0 2

Gumbel — 1.140

Gamma 0.1
0.2
0.4
0.6
0.7

0.2
0.4
0.8
1.2
1.4

Frechet 0.1
0.2
0.3
0.4

1.662
2.353
3.353
5.006

Weibull 0.1
0.2
0.3
0.4
0.5
0.7

20.715
20.352
20.026

0.277
0.566
1.131

22a 1 a 2 4a (a 2 x )Ï2 2 3 1 s
u = (21)

2a3

Unlike (12) and (14), obtaining the coefficients and (16) and
(21) does not require the application of any approximation or
assumption. Therefore, (21) is an accurate third-moment stan-
dardization function.

RELIABILITY ANALYSIS INCLUDING VARIABLES
WITH UNKNOWN CDF

Using the first three moments of an arbitrary random vari-
able x (continuous or discontinuous) with unknown PDF/CDF,
a standard normal random variable u can be obtained using
(21), and a random variable x9 corresponding to u can be ob-
tained from (16). Since u is a continuous random variable, x9
will also be a continuous random variable. Although x and x9
are different random variables, they correspond to the same
standard normal random variable and have the same third cen-
tral moment and the same statistical information source.
Therefore, can be considered to be an anticipated PDFf (x9)
of x. Using this PDF, (1) will become operable. Because the
u-x and x-u transformations are realized directly by using (16)
and (21), the specific form of f (x9) is not required in FORM/
SORM. Assuming that the random variables with an unknown
PDF/CDF are independent of those that have a PDF/CDF and
are independent of each other as well, from (16) and (21), the
element of the Jacobian matrix corresponding to a random
variable x with an unknown PDF/CDF can be given by

­u 1i
J = = (22)ii

­x s(a 1 2a u )i 2 3 i

For a reliability analysis with all the random variables that
have a known PDF/CDF, the analysis can be conducted using
the general FORM procedure (Ang and Tang 1984). For reli-
ability analysis including random variables with an unknown
PDF/CDF, the procedure can be rewritten as follows:

1. Divide the random variables X into two groups X = [X1,
X2], where X1 are the random variables that have a
known PDF/CDF, and X2 those with unknown PDF/CDF.



2. Select an initial design point X0 (generally the mean
value point).

3. Transform X0 into a standard normal space to obtain U0.
For X1, the normal transformation is conducted using the
Rosenblatt transformation, and for X2, the normal trans-
formation is conducted using the third-moment standard-
ization function (21).

4. Compute the derivatives of the performance function
G(X) to X at X0.

5. Transform the derivatives to X into those to U at U0

using the Jacobian matrix. For X1, the elements of the
Jacobian matrix are obtained from the Rosenblatt trans-
formation, and for X2, they are obtained using (22).

6. Obtain a new design point and compute the first-order
reliability index.

7. Substituting Xk11 for X0 in step 3, repeat steps 3 through
6 until convergence.

The procedure is identical to that of the general FORM, with
the exception of the conduction of the normal transformation
and the computation of the elements of the Jacobian matrix
corresponding to the random variables with unknown PDF/
CDFs. Therefore, the reliability analysis with the inclusion of
random variables with unknown PDF/CDFs using the pro-
posed method requires few extra computational efforts, com-
pared to the general FORM procedure.

When random variables that have an unknown PDF/CDF
are contained in a performance function with strong non-
linearity, for which a more accurate method such as SORM is
required, the proposed method can also be applied. In such a
case, the computational procedure is identical to that of general
SORM with the exception of the u-x and x-u transformations
and the computation of the elements of the Jacobian matrix
corresponding to the random variables with unknown PDF/
CDFs.

EXAMPLES AND INVESTIGATIONS

u-x and x-u Transformations for Gamma Random
Variable

In order to investigate the efficiency of the proposed third-
moment standardization function, some random variables, for
which the exact u-x and x-u transformations can be obtained,
are selected. Example 1 considers a gamma random variable
that has the following PDF:

1 2x l21f (x) = e x , 0 # x < `, l > 0 (23)
G(l)

For l = 3, the mean value, standard deviation, skewness, and
kurtosis are obtained as m = 3, s = a3 = ' 1.1547,3, 2 3/3Ï Ï
and a4 = 5, respectively.

The variations of the u-x transformation function with re-
spect to u are shown in Fig. 1 for the results obtained using
the exact transformation, the present accurate third-moment
transformation (16), the Cornish-Fisher expansion (7), and the
transformation function (14) obtained from HOMST. Fig. 1
reveals the following:

1. The transformation function, (7), obtained using the Cor-
nish-Fisher expansion provides results that appear wave-
like compared to the exact results. When the absolute
value of u is large, the results obtained from (7) differ
greatly from the exact results, indicating that, although
the u-x transformation obtained from the Cornish-Fisher
expansion is quite complicated, it does not provide ap-
propriate u-x transformation results for this example.

2. Eq. (14) yields significant errors when u is less than 21
 FIG. 2. x-u Transformation for Gamma Random Variable

FIG. 1. u -x Transformation for Gamma Random Variable

and cannot provide real results when u is larger than 2.8,
for this example.

3. The proposed transformation function (16) generally pro-
vides better results than other functions, even though
only the information of the first three moments is used,
whereas other formulas use the information of the first
four moment informations. However, when u is less than
22 for this example, the present formula also yields sig-
nificant errors.

The variations of the transformed standard normal random
variable u with respect to the standardized random variable xs

are shown in Fig. 2 for the results obtained using the exact
transformation, the proposed accurate third-moment transfor-
mation function (21), the transformation function (6) obtained
from the inverse Cornish-Fisher expansion, the transformation
function (12) obtained from HOMST, and the transformation
function (5) obtained from the Edgeworth expansion. Fig. 2
reveals the following:

1. Both the transformation function obtained from the
Edgeworth expansion and that obtained from the inverse
Cornish-Fisher expansion provide results that appear
wavelike compared to the exact results. When u is large,
the results obtained using the inverse Cornish-Fisher ex-
pansion differ greatly from the exact results. That is to
say, obtaining appropriate x-u transformation results us-
ing the Edgeworth and Cornish-Fisher expansions is dif-
ficult, and the procedure itself is quite complicated.
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FIG. 3. u -x Transformation for X = R-S where R, S Are Normal
and Weibull Random Variables, Respectively

2. Good agreement was obtained between the results ob-
tained using the proposed transformation function (21)
and the exact results, even though the proposed trans-
formation function uses only the information of the first
three moments, whereas other formulas use the infor-
mation of the first four moments.

u-x and x-u Transformations for Function of Random
Variables

Example 2 considers the following function of random var-
iables:

X = R 2 S (24)

where R is a normal random variable with mR = 3.0 and sR =
0.6; and S is a Weibull random variable with mS = 2.0 and sS

= 1.0. Using the first four moments of R and S, the first two
moments of X can be obtained as mx = 1.0 and sx = 1.166 and
the skewness and kurtosis of X can be readily obtained as a3

= 20.357 and a4 = 3.071. Because the PDF/CDf of X is un-
known, the exact x-u transformation can be obtained using the
following integration:

`

t 1 x 2 mR21u = F F f (t) dt (25)WFE F G GsR0

where fW is the PDF of the Weibull distribution; and F is the
CDF of the unit normal distribution.

The variations of the u-x and x-u transformation functions
are shown in Figs. 3 and 4, respectively, for the results ob-
tained using the exact transformation, the proposed accurate
third-moment transformations (16) and (21), the Edgeworth
and Cornish-Fisher expansions (5)–(7), and the transformation
functions (12) and (14) obtained from HOMST. Figs. 3 and 4
show that all of the methods in the investigation provide good
approximations of the exact results when the absolute value
of u or xs is small. When the absolute value of u or xs is large,
only the results provided by the proposed formula are rela-
tively close to the exact results.

From the two aforementioned examples, one can see that
although the Edgeworth and Cornish-Fisher expansions are
quite complicated and require higher-order moments, the ac-
curacy of their transformations is not good. This is because
the absolute values of the skewness for the two examples are
too large (a3 = 1.1547, 20.357 for examples 1 and 2, respec-
tively) to satisfy the fundamental requirement for so-called
‘‘mild nonnormality.’’ This can also explain why the results of
the Edgeworth and Cornish-Fisher expansions in example 2
are better than those in example 1.
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FIG. 4. x-u Transformation for X = R-S where R, S Are Normal
and Weibull Random Variables, Respectively

Reliability Analysis Using FORM for dR-S Reliability
Model

Example 3 considers the following performance function,
which is an elementary reliability model that has several ap-
plications:

G(X) = dR 2 S (26)

where R = resistance having mR = 500 and sR = 100; S = load
with coefficient of variation of 0.4; and d = modification of R
having normal distribution, md = 1 and sd = 0.1.

The following four cases are investigated under the as-
sumption that R and S follow different probability distribu-
tions:

• Case 1: R is lognormal and S is Weibull (Type III—small-
est)

• Case 2: R is gamma and S is lognormal
• Case 3: R is Weibull and S is lognormal
• Case 4: R is Frechet (Type II—largest) and S is expo-

nential

Because all of the random variables in the performance
function (26) have a known PDF/CDF, the first-order reliabil-
ity index for the four cases described above can be readily
obtained using FORM. In order to investigate the efficiency
of the proposed reliability method, including random variables
with unknown PDF/CDFs, the PDF/CDF of random variable
R in the four cases is assumed to be unknown, and only its
first three moments are known. Considering the first three mo-
ments, the u-x and x-u transformations in FORM can be per-
formed easily using the proposed method, and then the first-
order reliability index, including random variables that have
an unknown PDF/CDF, can also be readily obtained.

The skewnesses of R corresponding to cases 1–4 are easily
obtained as 0.608, 0.4, 20.352, and 2.353, respectively. The
first-order reliability index obtained using the PDF/CDF of R
and using only the first three moments of R are depicted in
Fig. 5 for mean values of S in the range of 100–500. Fig. 5
reveals that, for all four cases, the results of the first-order
reliability index obtained using only the first three moments
of R are very close to those obtained using the PDF/CDF of
R. This is to say that the proposed method is accurate enough
to include random variables with an unknown PDF/CDF.

For case 3, the detailed results obtained while determining
the design point using the PDF/CDF of R and the first three
moments of R are listed in Table 2. Table 2 shows that the



FIG. 5. Comparison of First-Order Reliability Index with
Known and Unknown PDF/CDF for Example 3

checking point (in original and standard normal space), the
Jacobians, and the first-order reliability index obtained in each
iteration using the first three moments of R [columns (6)–(9)]
are generally close to those obtained in each iteration using
the PDF/CDF of R [columns (2)–(5)].

Application in Point-Fitting SORM

The fourth example considers the following performance
function, a plastic collapse mechanism of a one-bay frame,
which has been used by Der Kiureghian (1987).

G(X) = x 1 2x 1 2x 1 x 2 5x 2 5x (27)1 2 3 4 5 6

The variables xi are statistically independent and lognormally
distributed and have means of m1 = ? ? ? = m4 = 120, m5 = 50,
and m6 = 40, respectively, and standard deviations of s1 =
??? = s4 = 12, s5 = 15, and s6 = 12, respectively.

Because all of the random variables in the performance
function shown in (27) have a known PDF/CDF, the reliability
index can be readily obtained using FORM/SORM. The
FORM reliability index is bF = 2.348, which corresponds to
a failure probability of PF = 0.00943. The true value of failure
probability is PF = 0.0121 (Der Kiureghian 1987). Using the
point-fitting SORM, the point-fitted performance function is
obtained as

G9(u) = 273.08 1 11.91u 1 23.81u 1 23.81u 1 11.91u1 2 3 4

2 2 22 54.82u 2 51.00u 1 0.584u 1 1.147u 1 1.147u5 6 1 2 3

2 2 21 0.584u 2 17.91u 2 12.08u4 5 6 (28)
The second-order reliability index is obtained as bS = 2.273,
which corresponds to a failure probability of PF = 0.0115 (Zhao
and Ono 1999a).

In order to investigate the application of the proposed reliability
method, including random variables with unknown PDF/CDFs to
the point-fitting SORM, the PDF/CDFs of random variable x5 and
x6 are assumed to be unknown, and only their first three moments
are known. Using the first three moments, the u-x and x-u trans-
formations can be performed easily using the proposed method,
and then the point-fitting SORM, including random variables with
unknown PDF/CDF, can also be performed easily. The point-fitted
performance function is obtained as

G9(u) = 287.63 1 11.91u 1 23.81u 1 23.81u 1 11.91u1 2 3 4

2 22 73.13u 2 58.50u 1 0.583u 1 1.146u5 6 1 2

2 2 2 21 1.146u 1 0.583u 2 11.78u 2 9.425u3 4 5 6 (29)

The design point in u-space, the average curvature radius, and
the first- and second-reliability indices obtained using the first
three moments of x5 and x6 are listed in Table 3, along with a
comparison of those obtained using the PDF/CDFs of x5 and
x6. Table 3 reveals that the results obtained using the first three
moments of x5 and x6 are very close to those obtained using
the PDF/CDFs of x5 and x6. This is to say that the proposed
u-x and x-u transformations are applicable to the point-fitting
SORM.

Shortcomings of Proposed Method

In order to investigate the shortcomings of the present
method, the fifth example considers a Weibull random varia-
ble. Two cases, that is, when the coefficient of variation is
taken to be V = 0.1 and V = 0.7, are investigated. As listed in
Table 1, the skewness a3 is equal to 20.715 for V = 0.1 and
1.131 for V = 0.7.

The variations of the u-x transformation function with re-
spect to u are shown in Fig. 6 for the results obtained from
the exact transformation, the proposed accurate third-moment
transformation (16). Fig. 6 shows that the proposed method
provides good approximations for the exact result when the
absolute value of u is not very large. For V = 0.1, which
implies that the skewness is negative, the proposed method
produces significant error when u is larger than 2. For V =
0.7, which implies that the skewness is positive, the proposed
method produces significant errors when u is less than 23, for
this example. Needless to say, the specific range of u or xs in
which the method provides good approximations depends on
the value of a3. As shown in examples 3 and 4, appropriate
results can be generally obtained using the method.
TABLE 2. Comparison of FORM Procedure with Known and Unknown PDF/CDF for Example 3

Iteration
(1)

USING PDF/CDF

Checking Point

(x)
(2)

(u)
(3)

Jacobian
(dx/du)

(4)
b

(5)

USING FIRST THREE MOMENTS

Checking Point

(x)
(6)

(u)
(7)

Jacobian
(dx/du)

(8)
b

(9)

1 1
500
150

0
20.0683

0.1926

0.1
101.71
57.788

0.2044 1
500
150

0
20.0588

0.1926

0.1
100.35

57.788

0.2014

2 0.8863
271.67
214.82

21.1371
22.0865

1.1249

0.1
115.89
82.759

2.6291 0.8846
276.59
215.91

21.1536
22.0766

1.1381

0.1
124.07

83.182

2.6340

5 0.9508
293.42
278.98

20.4922
21.9002

1.8033

0.1
117.35
107.49

2.6655 0.9529
284.75
271.33

20.4713
21.9863

1.7311

0.1
123.01
104.53

2.6766
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TABLE 3. Comparison of SORM Results for Example 4

Method
(1)

Design point U*
(2)

bF

(3)
R
(4)

bS

(5)
Pf

(6)

With known PDF/
CDF

{20.181, 20.356,
20.356, 20.181,
1.890, 1.274}

2.348 233.17 2.273 0.0115

With unknown
PDF/CDF

{20.184, 20.362,
20.362, 20.184,
1.830, 1.313}

2.325 249.18 2.274 0.0115

FIG. 6. u -x Transformation for Weibull Random Variable

CONCLUSIONS

1. The proposed method enables the u-x and x-u transfor-
mations for random variables with unknown PDF/CDF
to be realized, thus eliminating the necessity of using the
Rosenblatt transformation. From numerical examples,
the proposed method is found to be accurate enough to
include random variables with unknown PDF/CDF in re-
liability analysis using FORM/SORM.

2. Despite being very simple, the proposed third-moment
standardization function provides more appropriate u-x
and x-u transformation results compared to the other ex-
isting high-order moment transformation functions.

3. The range of the first moment ratio, that is, the skewness
a3, for which the proposed third-moment standardization
is operable, is # a3 # The limitation is22 2 2 2.Ï Ï
not strict for general engineering use. Further study is
required for problems that include random variables that
have an extremely large absolute value of skewness.

4. The proposed method produces significant error for an
extremely large u or xs, when the skewness is negative
and for an extremely small u or xs when the skewness is
positive. However, the proposed method generally pro-
vides more appropriate results in wider ranges of u or xs

than other existing methods.

APPENDIX I. EDGEWORTH AND CORNISH-FISHER
EXPANSIONS

Let {Fn} be a sequence of distribution functions depending
on a parameter n, and converging to the normal distribution
F as n increases, then for {L} = {lr = kr 2 dr, r = 1, 2, . . .},
where kr is the rth cumulant, dr = 1 if r = 2, otherwise dr =
0, the following three expansions can be written (Stuart and
Ord 1987)

`

F (x) ' F(x) 2 f(x) M (x, L) (30)n rO
r=1
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`

21u = F [F (x)] ' x 2 N (x, L) (31)n rO
r=1

`

21x = F [F(u)] ' u 1 P (u, L) (32)n rO
r=1

where F and f are the distribution and density functions, re-
spectively, of a standard normal random variable. Eqs. (30)
and (32) are usually referred to as Edgeworth and Cornish-
Fisher expansions, and (31) is referred to as an inverse Cor-
nish-Fisher expansion (Stuart and Ord 1987).

Without loss of generality, using the standardized random
variable in (4), l1 and l2 will become 0, (30), (31), and (32)
can be rewritten in terms of the cumulants of xs, K = {kr, r >
2}, and the polynomials can be simplified greatly. Using the
first four polynomials of the Edgeworth and Cornish-Fisher
expansions in terms of L = {lr, r > 0} (Withers 1984), the first
four explicit polynomials of Mr(x, K) in the Edgeworth expan-
sion (30) are obtained as

1
M (x, K ) = h k (33a)1 2 36

1 1 2M (x, K ) = h k 1 h k (33b)2 3 4 5 324 72

1 1 1 3M (x, K ) = h k 1 h k k 1 h k (33c)3 4 5 6 3 4 8 3120 144 1,296

1 1 2M (x, K ) = h k 1 h (5k 1 8k k )4 5 6 7 4 3 5720 5,760

1 12 41 h k k 1 h k9 3 4 11 31,728 31,104 (33d )

where hj is the jth Hermite polynomial expressed as
jd f(x)jh = (21) f(x) (34)j jdx

The first four explicit polynomials of Nr(x, K) in the inverse
Cornish-Fisher expansion (31) are expressed as

1 2N (x, K ) = k (x 2 1) (35a)1 36

1 13 2 3N (x, K ) = k (x 2 3x) 2 k (4x 2 7x) (35b)2 4 324 36

k k k5 3 44 2 4 2N (x, K ) = (x 2 6x 1 3) 2 (11x 2 42x 1 15)3 120 144

3k 3 4 21 (69x 2 187x 1 52)
648 (35c)

2k k6 45 3 5 3N (x, K ) = (x 2 10x 1 15x) 2 (5x 2 32x 1 35x)4 720 384

2k k k k3 5 3 45 3 5 32 (7x 2 48x 1 51x) 1 (111x 2 547x 1 456x)
360 864

4k 3 5 32 (948x 2 3,628x 1 2,473x)
7,776 (35d )

The first four explicit polynomials of Pr(x, K) in the Cor-
nish-Fisher expansion (32) are expressed as

k3 2P (u, K ) = (u 2 1) (36a)1 6

2k k4 33 3P (u, K ) = (u 2 3u) 2 (2u 2 5u) (36b)2 24 36



Pf = probability of failure;
k k k5 3 44 2 4 2P (u, K ) = (u 2 6u 1 3) 2 (u 2 5u 1 2)3 120 24

3k3 4 21 (12u 2 53u 1 17)
324 (36c)

k6 5 3P (u, K ) = (u 2 10u 1 15u)4 720

2k k k4 3 55 3 5 32 (3u 2 24u 1 29u) 2 (2u 2 17u 1 21u)
384 180

2k k3 4 5 31 (14u 2 103u 1 107u)
288

4k 3 5 32 (252u 2 1,688u 1 1,511u)
7,776 (36d )

If only the information of the first four moments of xs and
the relationships a3 = k3 and a4 = k4 1 3 are used, then (5)–
(7) are obtained.

As indicated at the beginning of this section, the fundamen-
tal requirement of the Edgeworth and Cornish-Fisher expan-
sions is mild nonnormality.

APPENDIX II: DERIVATION OF (17)

Making the first three moments of Su(u) equal to those of
xs, the following equations containing a1, a2, and a3 are ob-
tained:

m = a 1 a = 0 (37a)su 1 3

2 2 2s = a 1 2a = 1 (37b)su 2 3

2 2 3a s = 6a a 1 8a = a (37c)3su su 2 3 3 3x

After simplification, the following reduced cubic equation
of a3 is obtained:

3 13a 2 a 1 a = 0 (38)3 3 32 4

Eq. (38) has three real roots when # 8 and one real root2a 3

when > 8. From (37b), a3 should satisfy the following equa-2a 3

tion in order for a2 to be real:

2Ï
a # (39)3 2

The only root of (38) that satisfies (39) is obtained as

sign(a )u9 2 p3
a = sign(a ) 2 cos (40)Ï3 3 F G3

where

28 2 aÏ 3
u9 = arctan (41)S D

2a3

Using the relationships tan(2w) = 2tan(w) and cos(2w) =
cos(w), (17) can be readily obtained.
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APPENDIX IV. NOTATION

The following symbols are used in this paper:

a1, a2, a3 = coefficients used in third-moment standardization
function;

f (X) = joint probability density function of X;
G(X) = performance function;
hj (x) = jth order Hermite polynomial;

kr = rth cumulant;
Mr = rth polynomial of Edgeworth expansion;
Nr = rth polynomial of inverse Cornish-Fisher expansion;
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Pr = rth polynomial of Cornish-Fisher expansion;
R = resistance;
S = load;
U = standard normal random variables;
X = random variables;
xs = random variable corresponding to x with its mean

value and deviation standardized;
a3x = first moment ratio, i.e., coefficient of skewness of

random variable x;
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a4x = second moment ratio, i.e., coefficient of kurtosis of
random variable x;

bF = first-order reliability index;
bS = second-moment reliability index;
m = mean value;
s = standard deviation;

F(x) = standard normal probability distribution with argu-
ment x; and

f(x) = standard normal density distribution with argument.


